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SECTION I

INTRODUCTION

The present report gives a version of linearized airfoil

theory for subsonic oscillatory flows which avoids the frequently-

used idea of concentrating the pressures into lines or points. As

usual, the linearized flow differential equation is solved by

means of fundamental solutions. The boundary conditions at the

planform then are expressed by an integral equation. In this

report, the acceleration potential Is used. It has the advantage

of giving directly, without differentiations, the pressure

distributions. Consequently, the Kutta condition expresses itself

very simply by the postulate that there is no pressure difference

between the upper and lower side of the wing. However, the

singularities which occur in the governing integral equation are

very strong and this causes conceptual and practical

difficulties.

For numerical purposes, one always expresses the pressure

distribution in terms of a finite number of parameters. In the

vortex lattice method (which can be viewed as a discretization of

the integral equation formulation) the pressures are concentrated

-. into lines along which the force per unit of length is piece-wise

". constant. For such lines (and the pertinent trailing vortices),

* the upwash can be computed by the Biot-Savart law. Dowell and ':

Ueda (Refs. 1,2), on the other hand, concentrate the pressures

into "pressure points;" although for points of the wing surface

lying in the wake of the pressure points, this concept must be

modified. Dowell and Ueda do this without further explanation by

reference to Mangler's work (Ref. 3). (It seems to me that

Mangler's approach is applicable only if for the upwash at points

0. of the wake one replaces the point force by a line force, or

alternatively if one averages the upwash along a line in the

wake.) To express the boundary conditions at the plan form, one

usually matches at a sufficient number of "control" points, the

upwash expressed in terms of the pressure parameters and the

upwash given by .he boundary conditions. One then obtains a

. .. .""- ".... *. ."--''- * - .*- * * -. *. -_r '.* " * ., -', ...- . ..- A.": *"" -"" '". "'. -. . "- -S -. . -. * "- .. .'. - .-. . " . . ...- . •-. . .-'



linear system (with a full matrix) from which the pressure

parameters are determined.

The upwash field obtained from the pressure field is by no
4

means smooth. The choice of control points therefore introduces

an element of arbitrariness. Nevertheless, these methods are

successful, although perhaps not overly accurate.

In the present study, the author reduces the arbitrariness

caused by the concept of pressure points or pressure lines and by

the choice of control points. (Some arbitrariness is inherent in

any discretization.) Within surface elements (preferably

triangles), an expression closely related to the pressure is

approximated by linear functions. The pressure is continuous as

one proceeds from one element to its neighbors. In a cruder form,

one may also use constant pressure elements. (Even in the latter

case, the wake has only logarithmic singularities if no side of

the (polygonal) element is parallel to the wake streamlines.) The

arbitrariness due to choice of the control points is avoided by

matching the upwash velocities in the average over control areas

(which include lines along which the flow field is singular).

While this is conceptually satisfactory, it complicates the

procedure since it requires further integrations. For control

areas at a distance from the pressure areas and their wakes, the

functions to be integrated are smooth. The integration can then

be carried out numerically, for instance, by (low order) Gaussian

integration. The results are rather close to those obtained with

the idea of pressure and control points. (This is the reason for

the success of the method of Ueda and Dowell.) In the vicinity of

the pressure element, or of its wake, it is preferable to

determine the part of the upwash in which singularities occur

analytically. One then uses a mixed numerical analytical method.

This works well for control areas close to the wake of the
.

pressure element but at some distance from the pressure area.

If the control element is close to the pressure element, a

corresponding splitting of the upwash is possible in principle.

But then even the "smooth" function to be integrated proves to be

2
* 4'..................
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rather intractable for numerical integration methods.

Fortunately, all necessary integrations can be carried out

analytically in terms of elementary transcedental functions. This

is possible because of several factors: (1) Ueda has provided a

development of the kernel of the integral equation with respect to

the reduced frequency. If the elements are close to each other,

only the terms of the lowest order, which are relatively simple,

are of importance. (2) If the wing surface is subdivided into

triangles, then it is possible to represent the pressure

distribution (roughly speaking) by linear functions which are

continuous, and at the same time, allow one to carry out the

necessary integrations. (3) The choice of the coordinate systems

is important. To obtain the upwash at a point (x,y) one uses

coordinates which have this point as origin. One of the two

integrations over the pressure element is then trivial. For the

integration over the control elements, one uses as origins the

corner points of the pressure elements with a similar effect.

The basic equations and the formulae of Ueda (with some

extension) are derived in Appendix A and B. The integral equation

directly written for the plane of the wing is meaningless. The

author found it preferable to go back to the original meaning and

include the limiting process in which one approaches the plane of

the wing from above or below. Mostly, but not always, one obtains

the same result as in the usual less cautious approach. Integra-

tion formulae needed for the determination of the upwash and later

for the averaging over the control area are first derived for

distant points close to the wake and later for cases where

pressure elements and control elements are close to each other.

The complexity of the resulting formulae has given the

author some uneasiness because of the danger of errors. The

analytical procedure is shown in sufficient detail so that the

reader will be able to check the results himself.

A survey of essential ideas and a listing of the formulae

needed in the computation is found in Section VIII.

.
-  
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SECTION II

BASIC EQUATIONS

Let x,y,z be a system of Cartesian coordinates. We consider

the subsonic oscillatory flow over a wing in a linearized

approach. The plane of the wing is given by z 0. Coordinates

within the wing planform corresponding to x and y are Z and n I.

respectively. The free stream velocity is U, the free stream Mach

number M, and the free stream density p. All lengths are made

dimensionless with a characteristic length L. The time dependence

of the oscillatory motion is given by the factor exp(ivt), where t I

is the time. The dimensionless frequency is k = vL/U. The

deviation of the pressure from the free stream pressure is made

dimensionless with p U-/2 and denoted by p. The dimensionless

pressure difference between the lower and upper sides of the wing

is denoted by Ap. The dimensionless upwash at a point x,y,z is

denoted by w. The upwash at a point x ,y,z expressed in terms of

,. the pressure difference is given by

W(XjZ) (8-t) [z f- Ap(,,n)R(Z-xrk)d~dn1 (1

A

The region of integration is the wing area A. K is given by the

classical formula

V

K(C-x,r,k) = exp(ik(k-x)) exp(ikV) ex(ikv)
R(V r2)17 - (V2+ 2 )3/2

with

~2 - 2 -2
r - (n-y) + z

A2 [(x_ )2 2r2]  (3)

2 1~

V - (1-M )-(-(E-x)-MR)

......



B- (1-M2 )1/2 (3) cont'd.

A derivation is found in Appendix A. We introduce the

Prandtl Glauert transformation

x x

y By

°9.-

(X'B- Y'- Z)an ,YZ
w~ -y,B -1z) = w(x,y,z) ""

ApCt-n) Ap(E,n) (4)

0 1 R(F-x,B-1 r,k) -K( -x,r,k)

with

r (n-y) 2 
+z

2

Then

w(x,y,z) -(B8n) ' z--( z Ap( ,n)K(E-x,r,k)d~dn) (5)

* A

" The power series development with respect to the reduced frequency

k of K, Eq. (2), has been derived by Ueda. (The result is by no

means obvious, because the integrals which arise if one develops

the integrand of Eq. (2) with respect to k do not converge.) In

Appendix B these formulae have been rederived. Simplifications

which are rather important for the present approach arise if one

partially combines the two terms on the right of Eq. (2). The

form used here is given in Eqs. (B.63, B.64, and B.65).

5 ;:
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The pressure difference Ap is found from an integral

equation, obtained from Eq. (5) by making the limiting process z4O

on the right and by substituting on the left the upwash

which, of course, is known over the wing. Because of the

singularity of K the evaluation of the right-hand side involves a
limiting process which is not trivial except for points (x,y) at

some distance from the point (E,n) and its wake. It is true one

obtains ultimately lim -L(z ff..) - lim ff .... except for one
zO3 z+"

important exception which justifies the cautious approach taken in
this report. A reference to the work of Mangler (Ref. 4) does not

seem to be sufficient.

In the approach taken here the wing planform is divided

into elements and within each element the (unknown) pressure is

approximated by a linear combination of shape functions. The

coefficients by which the shape functions are multiplied are the
pressure parameters so far unknown. The upwash distribution is

expressed in terms of these parameters. Usually a system of
equations for these parameters is obtained by equating the upwash

at certain points, called upwash points or control points, with

the upwash given by the boundary conditions. The upwash

pertaining to the chosen pressure distribution is by no means

smooth. At the element boundaries and certain lines of the wake

pertaining to a pressure element it goes logarithmically to -1
infinity; for constant pressure elements it even behaves as d-
where d is the distance from the boundary. One chooses the

control points at a distance from these singularities, but in any

case, the results will be rather inaccurate (except of course if
the points (x,y) are at some distance from the point (E,n) and its

wake).

In this report we equate the integrals over the given

downwash over certain areas of the wing with the same integral

over the downwash expressed in terms of the parameters for the

,5 pressures. These areas will be called control areas.

As the work progressed it became more and more apparent that

analytical integrations would play an important role. The kernel

of the integral equation is accompanied by a factor

-. '% -.° ° . %,° .-. °. .. .°.. . .. *.* .. 5.... ,.... .
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exp ik(E-x). We set

Ap( ,n) Ap(&,n)exp(ik&) (6)

This is one of the steps which make an analytical integration

feasible. Moreover, we introduce a weight function exp(ikx) in

the integrals for the upwash. Since the reduced frequency is not

large, exp(ik&) and exp(ikx) vary only by a small amount within an

element; or even within the pressure and control areas.

During the course of the work the author's idea about the

choice of the pressure and of the control elements have undergone

changes. First he had a subdivision of the planform in mind which

is suggested by the vortex-lattice method, and which has been used

in the work of Ueda and Dowell (Fig. 1). Then he realized that

for such trapezoidal elements it is not possible to find elemental

pressure shape functions which satisfy the two requirements that

the pressures be continuous as one passes from one element to the -.

next and that the resulting integrals can be integrated

analytically. Triangular elements with linear shape functions for

Ap(E,n) are preferable. Such elements can be obtained by drawing

one diagonal into the trapezoids of Fig. 1 (see Fig. 2).

In the triangles in Fig. 2 one side is parallel to the x- "t-1

axis (to the direction of the wake streamlnes). Consider a single

element and assume that Ap(E,n) is constant (Fig. 3a). Then one

obtains at the wake boundary n - r a singularity in the upwash as
-1

(ri3-y) , at the element boundary and at n - nI a singularity as

log(nl-y). In contrast, if none of the sides of the triangle is

parallel to the x-axis, then one obtains in the wake three

singular lines n - nj2 and n - n3 but only with

logarithmic singularities. In other words, one obtains a smoother

upwash although infinities are still present. This is of

particular interest if one works with elements of constant Ap. If

the pressure elements have sides parallel to the x-axis, then the

control elements must overlap lines of the wake pertaining to the

x-axis, otherwise integrals over the upwash will be infinite. For

pressure elements with no side parallel to the x-axis this is not
C,..:
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necessary, as the logarithmic infinities give a contribution which

remains finite after the integration. Incidentally, for constant

pressure elements one can use for the elemental areas quadrangles

as well as triangles. Such an elemental subdivision is shown in

Fig. 4. (Special measures may be needed at the wing tips and at

the center line.) A subdivision in triangles is obtained by

drawing into the quadrangles the diagonal which is not parallel to

the x-axis. Originally, the author thought it desirable to choose

the quadrangles or the triangles so that their corners lie on

lines of constant y but actually the integration formulae are of a

nature that a proliferation of singular lines in the wake causes

no additional computational labor.

The numerical work turns out to be quite complicated. It

would be greatly simplified if one could use a subdivision into

elements which possess a repetitive pattern. For wing plan forms

with parallel leading and trailing edges this can easily be

achieved (Fig. 5). Here one has only two types of elements (see

Fig. 5a) and it suffices if one establishes only once for each

type the necessary integrals over the combinations of one pressure

-" element and close upwash elements. If the trailing edge is not

parallel to the leading edge and one uses these subdivisions, then

one must admit exceptional elements at the trailing edge (see

Fig. 6).

For straight leading and trailing edges one can obtain a

subdivision which at least has self-similarity (Fig. 7). Let a

and b be the chords of the wing at its root and at the tip,

respectively. The net of element boundaries to be drawn is

self-similar with respect to the point of intersection of leading

and trailing edges (point 0). First we choose the cornerpoints of

the net that lie on the leading edge. The distances from point 0

are chosen in such a manner that each point is mapped into the

next one closer to 0 if one multiplies the scale of the figure by

a factor r < 1. If there are n + 1 points along the leading edge

(including the points at the wing root and at the wing tip), then

one needs n such transformations to transform the wing root a into

the wing tip b. Therefore,

Z : , -. ' . .. < .. '. .' .' - .. '- .- -'. -,-.-. - - . . .. . .. . . .-8.
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r (ba) n

If S is the wing span (measured in the y-direction) then point 0

lies at a distance

S1 - S a(a-b)I
-

The distance of the mth point along the leading edge from point 0,

(if one counts from the root outward and assigns m = 0 to the

root) is then

Sm = S1 
r n

It gives some simplification if the sides of the elements arrange

themselves in straight lines. The individual triangular elements

are then embedded in larger triangles. Such a net is obtained in

the following manner. First one chooses one of these larger

triangles with two corners at the points of the leading edge

determined above and one corner at the trailing edge. Next one

draws straight lines parallel to the sides of these triangles

through all those points of the leading edge (including some

outside of the wing). This divides the plan form into

quadrangles. Because of the choice of the initial points at the

leading edge one set of diagonals in these quadrangles form

straight lines through point 0. By drawing these diagonals one

obtains the desires self-similar net. In general, the other

diagonals will not form a straight line and, therefore, the

cornerpoints lying on a tract of these diagonals will not form a

line y - const. Of course if one of the sides of the original

large triangle is line y - const, then all triangles will have

such a side. For elements of constant Ap this complicates the

choice of upwash areas. This does not happen for elements in

which Ap is linear.

The parameter describing the pressure distribution are the

values of Ap( ,n) - Ap( ,n)exp(ix<) at the corners of the grid

formed by element boundaries. Une parameter therefore generates

pressure distributions in all elcrments that contain the corner

;v'"-?4"4 ."4 ''.' ./ - "" ",..'-)'-'.'.'. .... ,--° . - . .
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which pertains to the parameter whose influence one wants to

compute. The region covered by the elements pertaining to a

certain pressure parameter will be called the pressure area. In

the interior such an area consists of six triangular elements (see

Fig. 8). The integration of the upwash (with a weight function

exp(ikx) is carried out over "1upwash areas." They are identical
with the pressure areas. This ensures that the number of

equations equals the number of unknowns. The elements of the

matrix of the system for the determination of the pressure

distribution are given by the upwash due to the pressure in an

individual pressure area (with the value 1 assigned to the

pertinent pressure parameter) integrated over the upwash areas.

(This is, of course, nothing new, the idea is inherent in all

methods.) Each element belongs to several pressure and upwash

areas. To each triangular element belong three "elemental"

pressure distributions. The primary task is the determination of
the upwash due to the elemental pressure distribution integrated

over the different elements.

For elements with constant Ap, in which no side is parallel

to the x-axis, the elements themselves can be used as pressure and

upwash areas. If element sides are parallel to the x-axis and Ap

is constant, then the elements still constitute the pressure

areas, but the upwash areas must be chosen so that one has an

overlap of the singular lines within the wake; this is necessary

in order to avoid infinities in the integrated upwash.

Let N be the number of pressure parameters. It is the

number of corners in the grid at which the pressure is unknown,

* i.e., the number of grid corners except for those at the trailing

edge where the pressure difference is zero. It is also the number

of pressure and of upwash areas. The pressure parameters (each

with a pertinent pressure area) and also the upwash areas are

numbered from 1 to N. Ultimately, one will generate an N2 matrix.

Further numberings are introduced for the elements and for the
elemental pressure distributions. The number of elemental

pressure distributions is somewhat smaller than three times the
"- number of elements, because the pressures at the trailing edge are

10 '5
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zero. The numberings of the pressure areas and of the upwash

areas are the same. The numberings of the elemental pressure
distributions and of the upwash elements (with single subscripts)

are carried out independently. Let NE be the number of upwash

elements and N the number of elemental pressure distributions.

Which elemental pressure distributions belong to certain pressure

areas and which elements belong to the upwash areas is shown by
(1) (3"housekeeping" matrices M and M3) of dimension Np by N and N

by NE, respectively. The elements of these matrices are zero and
(1) , :. %one. An element MkL is one if the elemental pressure distribu-• ki

bution with index k pertains to the pressure area with index L.

Each row of M contains only a single one, each column a maximum

of six. The element ) is one if the elements with index j

belong to the upwash area with index i.
(2) (2)was

An element M(,k of a third matrix M (2)gives the upwash

integrated over the element with index j due to the elemental

pressure distribution with index k. The matrix for the system of

equations from which the pressure parameters are determined is

denoted by M. One has

M M(3 )M (2)( M(1) (7)

(2)
The main effort is the determination of the matrix M . An

element in which the pressure is prescribed will be called n-

element (because of the independent variables for the pressure),

and an element over which the upwash is integrated will be called

xy-element. In Section III formulae will be developed for

elements of M for which the xy-element is at some distance from

the &n-element. In subsequent sections xy-elements close to n-

elements will be treated.

A...:-2..
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SECTION III 1"

EVALUATION OF THE ELEMENTS OF THE MATRIX M (2) FOR
xy-ELEMENTS AT A DISTANCE FROM A n-ELEMENT

The computation is based on Eq. (5). The z-coordinate
appears only in the variable r. One has

zzrz

If the xy-element is not adjacent to the &n-element or its wake,

then the function K is free of singularities. One has

I- (zK) - K + (z/r K/ar)

and

lim (-(zK)) = lim K (9)
z+O zO

One simply replaces Irl by In-yi. This is the approach used

-* without restriction in Reference 2.

The specific form of K is found in Appendix B.

K exp(ik(&-x))(K1 + K2)

No wake singularities occur in K2. The wake singularities

occurring in K1 are displayed in Eq. (B.64a).

We have introduced in Eq. (6)

Ap ( ,n) - exp(ik )Ap(E,n)

12

&A

. -. .p



•.-. ,.-

"z. '.7

Eq. (5) will be discretized by postulating

08wr exp(ikx)w(xy)dxdy

AI(X,Y) (10o)
- JJ lim(.L z J Ap(C,r)(K1  K K)d~dinIdxdy (0

A (xAy) A (E,n)

Here A (xy) and A (t,n) refer respectively to the ith upwash and

the I pressure area. For a triangular element with corners

numbered J, k, t and pressure 1 at corner j, and pressure 0 at

corner k and Z, the linear pressure shape function is given by

i(nn Eq (n (x) and

(nk-n )  (n.-nj)_. ,,

iiT
This is easily verified by simple operations on determinants if

..(2) is obtained by replacing in Eq. (10) Ai(x,y) and A L( n)

respectively by the ith and the ith surface elements.

If the xy-element is not adjacent to the &n-element or its

wake, then the integrand of Eq. (10) is analytic in C, q, x, and y

and the integrations can be carried out with efficient numerical

methods. There exist even formulae for Gaussian integration over

a triangular area (developed for applications in elasticity).

If the xy-element is close to the wake but at some distance

from the &n-element, one proceeds as follows. The function K.

(see Eq. (B.64a)) is written

13



K; K + K:

(12)

p

K" K3 'K 31 +K 32b%

with

K- 2 2 2 r 2

31

2 n"= 2 r ~ (kr/2B)K32 k log r -n!(n+ 1) ! (13)

K 2 2 [R(R-(&-x))] -1 -(k2/2)log(2k- 1k(R-(r-x))) (r/2)! (14)n-0 :.

r - (n-y) 2 + z 2  (15)

The function K2 and K: are analytic even in the wake. Their

contributions can again be treated by Gaussian integration.

K K + K depends upon r only. For the evaluation of this
3 31 K32
part one divides both the &n-element and the xy-element

respectively by a line n-const and a line y=const into smaller

triangles (see Fig. 9). The contribution of these smaller ',

triangles are treated separately. Ap is a linear function of &l

and n

ap( ,ri) -C 0 + 1 +2 (16)

Consider a fixed n and a fixed xy triangle. Assign the index 1

to the corner opposite to the side parallel to the t-axis, and

subscripts 2 and 3 to the other corners (proceeding in ...-

counterclockwise direction), Figs. 10. We write

- C + C1 (-) + C2 (nn) (17)

10
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here a
Co C + 0i~ 2~

0O 0 O 1 &J + C2 nl 1

The sides here 1 2 and 1 3 of the triangle are given respectively

by

= . o'1
S1 2 ~21

and

I n3 nI 
( n - n l ) .- :' "

n - 3" 1

Then one can carry out the integration over F at constant n, and

the integrations over x at constant y. Let, for Fig. (10a)

f (y) "(Y-y 1 )(X 2 -x 3 )/(y 2 -Yl) (18)

f 2 ( n ) " + { C (n-n )](n-l)( 3 n2-n
(19)

2_ 2(Ci/2) (n-n I )2 ( -I n )2 - ( 3-EI1 1 .'': ..

1'.2

The upper and lo-'er signs hold for Figs. 10(a) and 10(b),

respectively. There are three elemental pressure distributions
Ap(4,n) in each element, and therefore three different sets of

constants Ci, and three different functions f2 (n). They are

quadratic in n.

Let I31 be the integral on the right of Eq. (10) with

K K replaced by K31 . If the triangles in the x,y-plane and
in the ,q-plane have the orientations of Fig. 10(a), one has

15
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I3 f f(Y) dn dy

yand Y3need not be the same as njand n13 because the x,y-

element need not lie in the wake of the en-element. The inner

*integration is, of course, carried out at constant y. We write

f (n)- f2 .y (Y)1 + f 1.T,yPVYJ 20

2 2 2'Y)(n-) + f

where
2

f (ri,y) [f (ni) -f()-

The function f 3(n,y) is analytic at y n 1. Then 1 31 appears

* in the form

1 (21)
31 311 + 312 + 313 (1

* where

2 dn 2

I 2 f(y)f (Y)( ( - dyr (23)
312 f 1 2 \ 2 ~2 /

2 1  (-y)d

31 3 f3~ 1 +z

1313 -j t1C f f 3Cydr - ZY 2 + 2 Z i 24

16



It is shown in Appendix D that lir m (...) applied to the second
z O 1!L1

term in the bracket of 1313 is zero. The first term is

independent of z. Thus,

Y3

lir (zJ313) n,y)d dy
-z 0

The Integrands are analytic functions.

The inner integration in I311 is carried out analytically.

311 3

3  3

- arctg nLX (25)
11 dr = 1

f1 + z o z

One then has to evaluate

3  3 -

z -0 z z+O (n y 2  2 z
n . (ri-v) + z

(26)1 1

n3-y r1 -Y

This result could have been obtained by setting z -0 on the left
side of Eq. (25), and substituting into the formal expression for-1)

the indefinite integral (namely -n1) the limits nI and n3; this,
in spite of the fact that the integral obtained by immediately

setting z =0 does not exist for n -0. Then

l rm h (z I) 2 ( 1 dy
z.O 311 f 1 n f-(Y)f2(y) n3-Y T

17
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The integrand is singular for y = n3 and y - nI . If the xy-

element lies exactly in the wake of the En-element, then nI  Y'

n 3 = Y3; the integrand is singular at the two limits. If the xy-

element is adjacent to the wake, then this happens at only one

limit. The two singular terms are now treated separately.

Y3 f (Y)f 2 (y) Y3"
3 2 r1 3y

-I n3-Y dy f - r fC )f2 ) (n q_ -y  ::::'
YJ 3 Y I -'

(26a)

* Y3 fl (Y)f 2 (y) - f (n3)f2(n3)]dy

. The second term on the right is a smooth function. It, therefore,

*1 can be integrated numerically without difficulty. It is best to

write it in the form

y fc(y) - f1( 3  f (y) f2( 3
- J3  f2 (y) + f1(n 3) dy ""in 3-Y n3 -Y .3

".*.

" The first term on the right of Eq. (26a) gives

l n3 -YI'

* This term is infinite if y3 - n3. This happens because at the

element boundaries the upwash caused by the Eq-element behaves as

(n3-Y) If Ap is continuous as one passes over the element
boundaries in the n-direction (as it happens for the two

- boundaries between the smaller triangles in Fig. 9 or for the
*:: triangular elements with one side parallel to the E-axis and

linear pressure distributions), then the singular term is canceled
by a contribution of the adjacent En-element.

18
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T.V..

We have

lir 2- (z I
zO 311

S82 fl (n3 )f2 (n 3 )log in3-Y3 fl (nl)f 2(nl )log Il-Y3

Y3 f1(Y)f2 (y) - f1(n 3 )f2 (n3
)  Y3 f1 (Y)f2 (

y ) - f1 (nl)f 2 (nl )1dy- n3_ -y dy

yl Y l

(27)

The inner integral of 1312 gives

I 2 z2  3g log((n-y) Z I
One has

n3

. (1/2)lim ra (z log((n-y)2  Z z2
z -60

n1

n3 n3lia (1/2)log((n-y)2  2 2 f logjn-yi

zO n (n-y +1 n

This result would have been obtained, if one sets in Eq. (23)

z - 0, disregards the singularity of the integrand, integrates

analytically, and substitutes the limits.

19".

f.'-'.
1 9 if

if '"tp

: e
e

° % . ¢ .- , ¢ - , - . .. . .. • . • . . . . . . . . . ° • . . . . . .. . .•i



Then

Y33

lira5- (zJ 312) 0 f2 fl (y)f (y)[log(n3_-y ) _log(nlY)ldy (28) ..

Zm+

yjy
. The integrand is singular for y = 3and y - 1 .We introduce -.-o

f4(y) f J f1 (v)f2(v)dv (29)

YO

The first term of Eq. (28) can then be written (for q fixed)

S J [f4(y) _ f l(q))log(n3-y)dy

yl
(30)

3 Y3 (f4(Y) -4 q) .
(f (y) - f (q))log(n3-Y) I . ) dy

Yl Yl

If n13 lies within the interval of integration, one chooses q 3'

This ensures that (f3 (y) - f3 (q)/(n 3-y) is an analytic function of

y, even at y - ni. If ni lies outside of this region, then the
33 -'~integrand is analytic in any case. It is, however, still

advisable to choose the constant f (q) so that the integrand is as

smooth as possible, but it is not necessary that one evaluate Eq.
(29) for values of y outside of yl ( y < Y3, or if one does, it

need not be done with precision. Therefore,

20...



1 312 2 (f ))log(n ) 3 Y3 f4(y) - f4(n3) dn
1312 = ((Y) -f4ln3))° 3-Y)YI + Yl J"  n3-Y d(1

Y3  )3 f4 (y) - f4 (nl )
- (t(Y) - f (n1)1og(nl-y) I - n-y

y1  y'

Let I32 be the integral I with K replaced by K32, Eq. (14). We

omit a demonstration which would show that

1im(~(z = li 132
z+O zO

Let
2n

f (nny 1 (32)5- n ! (n+l) I, "

Then

2  Y3

lim 132 k fl f(y) f log(n-Y)f 5(n-Y)f 2 (n)d dy (33)
Y 1in 1 i>

Let iV. Tj
f6(n'Y)= i f2 (v)f 5(v-y)dv (34)

V-y "-

The inner integral then becomes

3 ,,
logln-yl(af 6 /an)dn - (logln-yjf6(n,y) j - 7 (y) (35)

n1  n-ni

21
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t":. .' .

with

3 f 6 (n,y)

f7(y) - dn (36)

T)1

The integrand in the last expression is a smooth function of n

*" which can be treated numerically.

For the evaluation of I32, Eq. (33), one then needs

Y32I

(k 2 /2) "I (f7ydy(371)•..

y1

Y3 .
k2 /2 J f 1 (y)[logji 3-yl- 6 (n3 ,y) - logl-Yjf 6 (T1 9 y))dy (38)

y1

y3
k /2 fr ( - f8 yqf6())lygldy-(38)

Y l "

The iLntegrand of Eq. (37) is smooth. The two terms in the bracket ,.,

of the integrand in Eq. (38) are treated separately. Let ":

*. 4

f 8 (ogJi33 -Yfr1(Y,6 3-n3(qn 3) - f9 ((93 )

)YO

yy
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1.

where

Y3  f 8 (n1,r 3 ) - 8 q (n3)
f9(n3~) =- y(1

If yl n3 < y3, one will choose q - n3g Then the integrand of
Eq. (411) is an analytic function, even at y = 1. If n1 is

outside of this region then the integrand of Eq. (141') is analytic

for any choice of q in the constant f 7(q,n 3 ), but one will choose

q approximately equal to n13 to obtain a smooth Integrand of
Eq. (141) in the interval of Integration. The same procedure is

applied to the other term, with n1 replaced by n1i

Then

I3 -(k /2) f)j f(y)f (y)dy

+log(n -yC yn (q,f f f(n) (42)

- ogn-y)[f8 (y'ra 1 ) -f 8(qn) 9

For triangular elements the functions f1 and f2 (Eqs. (19))

232
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The constants c1 , 029 and c3 are the only parameters by which the

elemental pressure distributions enter the computations. It is

therefore practical to program their contributions to the

following expressions separately then

f 3 -c 3

* and

1 313 - 1 3 C 3 (y 3 -y 1 ) 2 /2

One has

(f1 (Y)f 2 (Y) - f1 (v)f2 (v))(v-y)-1

- 1(f 1 (y) - f1 (v))/(v-y))f2 (y) [(f2Cy) - f2 (v))/(v-y)jf 1 (v)

- - 1(c 2 (y-ni) c 3 (Y-n I ) 2 + (v-y I )[c2  c 3 (Y-n I  V-nl].

Then

J(f1(y)f (Y) f f(v)f (v)(v-y)- dy

2
-C -c cE(v-y) (y-'n) + (y-n1 )/2

23
-c1c3E(v-Y1 (v-ini)(Y-ni) - ((v-y )(Y-nl) 12) (y-nj) 3 /3]

In the program this is considered as a function of y, v, yI, n1,,

(cic 2 ), and (a1c3). The expression occurring in Eq. (26a) are

then obtained by substituting Y3 or yl and n3 or n, for y and v

respectively. The lower limit in the integral for f' does not

*" matter.

The integrand in f is given by

c 1 (v-yl)[c 2 + 2(3 (v-Yl +Y - n

24
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Then J.J.

f (y) - CC 2 [(Y-Yl) 2/2) + 2c C 3 [((Y 1 -nl)(Y-y 1 )2 /2) + ((y-y 1 )
3/3)]

programmed as a function of y, yl, nl, (cLC 2 ), and (cLc 3 ).

-1 2J(f4(y) - f4(v))(v-y) dy - -(C c2 /2)[(v-y)(y-y,) + (y-y1 )]/2)]

2 2
-ClcC[(yl-n)((v-Yl)(Y-yl) + (Y-y1 ) /2) + (2/3)(v-n1 ) (y-y1 )

+ (1/3)(v-Y1 )(y-y 1 )2 + (2/9)(y-y1 )
3 ]

programmed as a function of y, v, yl, n1 (cC 2) and (clc 3 ) The

integral on the right of Eq. (30) is then obtained by substituting

Y3 and yl for y, and n3 for v. The same procedure is carried out ..

for the second term in the integral on the right of Eq. (28); one

simply replaces n 3 by n1.

The terms of 132 are O(k2 ), moreover n-y is small because

these computations will be carried out only if the xy-elements are
in the vicinity of the wake of the &n-element. Therefore, an

approximation of f5 by its first term will suffice

f -15

Then

vain
f6 (n,y) - J f2 (v)dv

viy

a ((c2 /2)(nin 1 )
2 

- (Y-nl)2) ((c3 /3)(n-n1)3 - (Y-nl) 3)

For the evaluation of f8 this expression is reordered in powers of

(y-y1)

25 .-
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2 2 (Y 2]
f6 1 - (02 /2)[(i-ri) -(y 1 -ri1 ) -2(yj-'nj)(Y-yj) -( Y

(C 3/3)C(n-ri1 )
3  - (y-l3- 3y-1)2(y-y 1 )

- 3 j-n ) - 2 ( - J 3

For the evaluation of f the first form of f6 is used

13-

f (y) f f6(11y)(n-y) 1dy

/2
+ (Y c 2[(n-n 2 (Y-nj(n)2n

*+ ( 33 ) /2n)~ /3y-) (Yn-r 1 )(3-Y /) (3 - 1 ) (3- l)2

Theni ereri oer f(-l

22J 7 (y)f(2/)dy (n-nl /2)[( - in, /2)n (3 j YY

Cyn(-)(-)13 31 22
+ (C 3/3)1(n 3-i) /3) + ((yi-r1 )(3-n 1  2) +(ln)(3n)

2 222
3 3r1- 1 (r 3-- 1 )( 3- 1)2 L(n-r)/2

3 
2*

263
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f8(y01 ) -f f 1 (v)f 6 (n, V)dv

(C c2 /)1(n-l)2 -(y-nj 2]((Y-yl) / 2) ?(yl-nl)((y-Y1 ) 
3/3)

- 4/1 + (c C /3)f[(ri-n1 ) 3 - y-i3](Yl21)

-3(yi-ri) ((Y-yi) /3) - 3(y 1 -nQ1((y-y 1 ) /4) - (YY)/)

* This is programmed as a function with arguments y-yl, r-nj, Y1-nis

(c c2) and (c c3)

Finally, one needs

y1

* but only for n-q. Ultimately, one must substitute q =r 3 and

2 22

* + ((q-y)My3-y )/2)] - 2(yl-nl)(y- 1
3 9 (q-y1 )( 3- 1  /6)

1 3q-y 1  )[((y3-yl)3]-h~3 y ) / ) + qy )((y3-y/1)

/8 4 /1 ) + qy*'.y ) 12

* qyj 2 ((y3-y) 3qy)(y3 y)-j
+ (Cqc3/) (-ri1)3 8 -i 3 [yy /) + (q-y 1 )(y 3-y1 )/4)1

2 3 22
+ -C 3 r"3)[((y-y) /9)lnl ]M qy(y 3- 1 ) /) + (q-y1) (y-y)/)]

+ qy)y- 1  3/4]-[(3 y ~/5 q (yy )( /20)

- 3(qYn) ((Y) /) + (qyl)((y y) 1)+ (q-yl)

1- 13-yi 3- 1 )/6)((y 3-yl )/3)]}

-~~~~~~~~~~~ '7ln /6 +(-j31)+ qy 8

)[((y -yl ) (y3- l) (( 3ILl

3 5 4

+ -. ** . (- l )/4) -. *~ - **.. *. - y ) /25). +'* * .. - y.. .. * . * . -l /20). *
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SECTION IV "-"

THE LIMITING PROCESS z-"O FOR POINTS (x,y)
CLOSE TO OR WITHIN A sn-ELEMENT .

A more refined procedure is needed for points (x,y) close to

points ( ,n) because certain terms in K have a denominator R,

which tends to zero if (E-x) and (n-y) tend to zero simul-

taneously, and because for &-x negative there are terms with any2 2 .'12
denominator r ((Z+ The latter singularity has been

treated in a simpler situation in Section III. In the present

section we study the limit z+O for the upwash at a fixed point .

(x,y). "

According to Eqs. (B.64) one must evaluate

@ 1, ff Ap(En)(K+ K2 )ddnI (43)w(xy,z - 0) - lim - z

z+0 3. 2

.. "

where

w(x,y,z) = 8wrexp(ikx)w(x,y,z)

The function K - KI+ K2 depends only upon -x and r with

2 22/

r - ((n-y)
2 + z2 112

The independent variable z occurs only in r. Because of the

singularities in K and because of the differentiation with respect

to z the result of the limiting process z+G is not entirely self-

evident. For part of the discussion we introduce polar

coordinates

=-x pcosa, n-y - psina

Then

R2  p2 + Z2  (44)

d~dn - pdpda

28
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One deals with integrals

if F(p,ci)dpds

Expressing F(p,a) in the form

F(pqa) - aG(p,a)/a (45)

one obtains by an argument familiar from the derivation of Green's

theorem

ff F"PI)dPda ff (3G(pa)/3a)dpda G(p,a)dp (46)

A A

Alternatively one can set --

F(p,a) - BH(p,a)/p (47)

Then one obtains

A A

If the point xy les outside the n-element, then p o 0_
throughout the element, and a returns after one complete circuit 7

around the element to its original value (Fig. 11). If it lies .

inside, then p varies between 0 and p(a), and a between 0 and 2w 'i

(Fig. 1 2).

For part of the discussion it is convenient to write

H(p,) - J F(P,a)dp

0
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(where p is a dummy variable of integration). Then

JJ F(p,a)dpdi - f f cF(-p~c)dP)(d/dL)di.
A L.0u 0 .

Here I is the length measured along the contour of the element (or

some other parameter which varies monotomically from 0 to L). The
value of a along the contour is considered as function of L.

We start the discussion of the individual terms of K with

K 2 9 Eq. (B.65). Only the first term, -R -1[(exp(ikV) - 1)/V], has

a denominator which tends to zero as p and z tend to zero, namely

* R *The expression V has the same property, but (exp(ikV) - 1)/V
*is obviously regular at V - 0. If any term is critical in the

limiting process z+0, then it is the first one namely -(ik)/R. It

is discussed presently. Except for factors one deals with the
expression

L p(ai)

fp(')-1 pdda f (Ap (p'0)(p )21/ pdp)(da/dL)t (49)

0 p-0

For fixed a the inner integral has the form

f~a 2 2 -1/2
I Jf(p)(p + Z) pdp

0

Ultimately one has to form lim (z -z...) for this expression. By
z+O

*an integration by parts one obtains

P(a)-Pa

I f(p)(p 2 ) / (df/dp)(p 2 z2 1/ dp

30
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and

p(cx)
(zI) - f(p)(p 2 + z ) /2 2 1/a 2 21- f(3I(1 (df/dp)(P + Z dp

0 0

+ z2 [f(P)(P 2 + Z -1/2 1 - j (df/dp)(p2 + Z2 ) -/ 2 dp]

0 0

The limiting process z+O gives

lim( L(zI)) - f(p(a))p(a)) - (df/dp)pdp
z.0 0

+ lim[z 2 f(p(Q))p(C)-1 - zf(O) - z2 Pla ) (df/dp)(P'2  2 -1 2 dp]
Z 0 0

- In the first line one carries out an integration by part and

obtains

P(M)

f f(p)dp

0

The first two terms of the second line vanish for z = 0. In the

* last term one has

p(ca) pcL

Sz2  J (df/dp)(p 2 + Z2 ) 1 /2dpi < z2 maxldf/dpl f (p2 + 1/2dp

0 0

Now

p (a)
(p2 2 ) dp/2 log(p + (p2 + 21/2J(p Z dp lgp (

0
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* The lower limit might be critical; it gives log z. The entire

expression is, however, O(z 2logz).

One thus obtains

*P(M) P (a)
zi z pdp) f f(p)dp

+ 0 0

Applying this result to Eq. (J49) one has

JA (p,cz)R1 pdpda-~((' (A (p~cI)d) (dci/dt)dt (50)

O (p-0

The results for K are less foreseeable. As p40, the first
1 -2

term of K1 behaves for z - 0 as p ,moreover, there is a singular

point in the wake of the point ( ,n), even for p A~ 0.

For a fixed point (x,y) the function A p(C,r) is written in

the form

Ap(,,n c (x,y)(&_x)m n~ n (51)
m n mn

obviously

C Ap(x'y)

In practice m < 1, n < 1, but the analysis will be carried out in

more general terms. The individual terms in Eq. (51) will be

* treated separately.

2 -
The term 0 [R(R & -x)] of K, gives a contribution to the

upwash of the form -

B2 f(t~x)m(rIy) tR(R & -x)) -1 d~d~ (52)
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TO this expression we apply the procedure implied by Eq. (145), 4'.

(rather than Eq. (47) because the integration with respect to is
somewhat more easily discussed than the integration with respect

to p).Setn

€ - ( -,(53)

(because then an important singularity occurs at * - 0), one

obtains for a single term of the expression in Eq. (51)

- m+n-1 m f

Imn (_mno2 Jj pm -cosom sin n

(54)
2))/ 2  2  2)]+ + - ~Cos - dpd¢ -.

The function G of Eq. (45) is then defined by

(m+nB2 m+n-1I
G(p, ) = p g(a,,) (55)

with

g(a,#) - J cosm sinnEa- cosaz- d¢ (56)

and

a(zp) - (1 + (z2/p2) 1 /  (57)

One has

a2 - 1 - 2

(58)
3a/3z = a 1 p 2z

If the point xy lies outside the rn-element, then p > 0 for all
2

points of the &n-element and the denominator p in Eq. (57) is no

matter of concern. If the point xy lies Inside the en-element,

33
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then one introduces a cut in the &n-plane in the downstream

direction through the point xy. In the p plane one then obtains V

the region shown in Fig. 13. The boundaries AB and DE are

respectively lines * - -w and - + i+. Along the contour of the

element, p is considered as a function of *, denoted by p(o).

Along AB and DE, p varies from zero to p(-r) - p(W).

The expression in Eq. (54) is now evaluated by means of

Eq. (46). One obtains
2re~l azz P+n-11 "

w 2(m+n+1 lim - - z ]mp  a- 1 g(a,0)dp (59)
z.o\Z j /

Using the definitions in Eqs. (55) through (57) one has a combined

contribution of AB and DE (Fig. 13).

P(W)

m+n+l 2 P m+n-la-'(g(a,r) - g(a,-w))dp
o0).B

For n odd the integrand in Eq. (56) is an odd function of *,
therefore,

g(a,w) - g(a,-%) - 0 , n odd

and one only needs to consider the integral along BCD, which
amounts to the integral around the contour of the region in the

En-plane.

Imn ()m+n+1 8 2 P pm+n-la- g(a,*)dp (60)

The function g(a,o) is defined in Eq. (56). The variables z and p

enter through the parameter "a," Eq. (57). The integral is formed
along the contour of the region.

To evaluate g(a,o) (Eq. (56)) we set, for n odd

g(a,o) - g1 (a,o) + g2 (a,f) (61)
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with

g1(a.#) T Jcos m sin n-1 *-ai -( a2) (n-l)/2 )[cos* a]-1 sin~d*

2; a,)J a (1 - a2) (nl1)/2 [a - cos,] 1 sinod 62

In the last equation, Eq. (58) is substituted and the integration

is carried out.

g - (n-i1)/2 - cos*)1 (63)9 -) a nzpnlog(a- o

In g, one can carry out the division by Ccoso - a). One

obt-ains a polynomial in cos. with coefficient given by powers of

"a." Notice that

in n -ag, ~ (1 a0 Cos *sin 0(1 -cos*) for n > 3, n odd

(6i4)

(Ccos* - 1)1-cosO) sin4 for n =1

Let

in In1 + 1m, (65)

with

'inni - m+n+l 2 41m+nlagjp i 1 ,

To obtain the upwash w, one must form lim (zI ). Along the

contour p A 0. In the present case (n odd) one obtains the

result immediately by setting a - 1.

wm, (mnl 82 j m+n-l
1-0
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where dl is the length element of the contour and L the total
length. Carrying out an integration by parts and using Eq. (64)

one obtains

L
Wmn,1 (-)+nB2 (m+n)-1 pm+ncos0sinn,(1 - cos)- 1 (do/dt)dl

1-0
(66)

n > 3, n odd

(-)m+1B 2 (m+l)-L pm+1 (cosm  - 1)(1 - cos) -1sin*(d*/dt)dl

1-0
(67)

n-i

With Eq. (63) one obtains

Imn,2 . f2(_)mnl+(n)/2zn- J pmam-ilog(a - cosf)dp

n-1
Because of the factor z , I will be zero for n > 3. Themn,2discussion is therefore restricted to the case n - 1. There one

obtains

W lim -(ZIml,2 )

-. lim(-)m pm am-1 log(a _ cos )(dp/dt)dtz O 0
(68)

L
2 m-in2 m-3+ z (m-1)r pr- am-log(a _ cos*)(dp/di)dt

0

+ Z2 Pj ~2ata [a cos ] (dp/dX)d1I

0 55
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If * f 0 along the entire contour, one obtains immediately

wm,1,2 - (_)m p omlog(1 - cos#)dp

and after an integration by parts

w ,1 2 m+l) 0=+1(1 -cos*) sin~d

for n = 1

We observed above that w m,n,2 - 0 for n > 3. One then obtains

from Eq. (66) and (67)

Sm~n 2.. .1 m~n m n -
Wmn n(m+n) IP cos *sin 4(1 - cos#)- d#

We return to a = + w, and subsequently to the original

coordinates (&-x) and (n-y). One has e-"

da = [(&-x)drn - (n-y)d&]/p 
2

Therefore,

U - -.e
w mn

(69)

0 2 (m~n) -1 f(-~~-~~ (E-x)1 p-i [(&-x)dn (r-y)dE]

The result remains the same if at some point of the contour 0 = 0.

There r - y -0, and E-x < 0. Then one writes

-12 2* (p (&-x)) -(p - ( -X)/p- (F -X))

= p' - ( .-x)

(n-y)2

.3
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One thus obtains an integrand

(C~x)m(f~Y) n-2 (p - (F&-x))p -1 [(t-x)dn - Cr-y)dt]

If n > 3, then there is no singularity. If n =1, there is one
singular point where the integrand behaves as (n-y) . The value

of w is then obtained by taking the principal value.

This is seen from Eq. (67). Let Ibe the value of I for

* which *-0. In the vicinity of this point we consider L. as

variable of integration. Let I - L(*). Then 1(-wr) - 0, 1(wr) - L,

and 1(O) to In the first integral in Eq. (68), but with limits

one can make the limiting process z-e0 and obtains

(.)nL~c)+ p loj~g(l cos )(dp/dt)d.

0 X

In the region -e < *< e, we take *as variable of integration

M £ m-1 2 2
pa (dp/d#)log(a -cos #) -log(a +cos#)]do

This Is majorized by

const log (a co )cos$ Jostd

2os 'o-L si4 )~i const 2c

f22
-c z
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and, by an integration by part
%'P.

2 +)
1.2. + si - c const 2e

cont~ino z +~ sin
-C - -

P

The integral is 0(c), the first term 0(clogc). As expected the

term vanishes in the limit c+0. The first one can be replaced by

L
p log(1 - coso)(dp/dL)dL

0

where the slash indicates that an e neighborhood of t t %o is

omitted. Actually, in this form the integral is well defined even

if one does not omit this neighborhood. But if one carries out an
integration by parts, as one does in order to arrive at Eq. (69),

the exclusion of such a neighborhood is necessary and leads to the

definition of the principal part of the integral. The second

integral in Eq. (68) vanishes in the limit because of the factor

z2 . In the third integral only an c neighborhood of the point (or

points) where 0 - 0, is critical

m2 am(a + cosd)d-1COS + sin 2 .]d(sinO)

The term in the first bracket is bounded. Carrying out the

integration for the remaining expression one obtains as bound

+ £

const pz-1 arctg(z psin )

- C

The arctg function is always bounded. For z - 0, the values are

-w/2 and +w/2. The whole expression is then O(z).
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For n even the contribution of the sides AB and DE of the

*region of integration do not cancel. Therefore, the vicinity ofoi

p -0 must be discussed.

As before, g is defined by Eq. (56). We set again

g 1 +~ 92 (70)

but now (n even)

m n m 2 n/2 -
g(a,#) -Jcos *sin *-a (10 a ][Ia -cos*] d*

g(a,f) ml 0 a2)n/2 - (71)

with

9 J~a -o~ do (72)

Incidentally, for n -0, m -0,

g 92(3

One verifies that

9 2(a 2 1) 12arctg[(a +1) 12(a -1)- / tg(*/2)]

*Using the definition of "a" Eq. (56) one finds

112 11 2 1/2 -1 2 2 1/2
(a ' ) (a - )12-(a M)a -1) -z (p +(p +Z) )

* Therefore,

z2-2p arctg[z -1(p +(p 2 z2 1/ )tg(4,/2)] (74)

2 2 ~2 1/2 - 2 2 2 1/
pz ) -

2 p~ tg(*/2)[(p (p ) L-/2)2
T zg z + (p +(p2+ 212 tg 2 (/2)
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The expression Eq. (74) will be encountered only if p 0 0. In the

limit z+O one can therefore replace (p2 + z2 ) 1 / 2 by p. One then

obtains

(Z- = -4p t (z small, p 0 0 ) (75)(zg2) z 2 + 4p 2 tg2 /2 '

Furthermore,

-z) - - cot( /2)1 z (zg 2  .: .
z-"O

Of course, the expression is meaningless for 0 - 0. If p 0 0 and

* 0 0, the last equation can be obtained directly from Eq. (72) in

the following manner.

lim(a(zg2 )/az) - lir g2 = J(i - cos*)-ld - (2sin (*/2)-ldoo
zO z.O

lim(a(zg2 )/3z) -cot(#/2)
z+O

For # - w and 0 - -i one has respectively tg(*/2) - - and

tg(#/2)---. Therefore, from Eq. (74)

zg (it) =pit

z92 (-W) - -pr (76)

and

a(zg2 /az - a(zg2 /az) 0
*-it *- -it

We begin with the contribution of 92 to Wmn, because there

the vicinity of p - 0 requires some extra attention. To evaluate

the downwash, one has to form Eq. (59). After substitution of

Eq. (71) it assumes the form

41
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II
2 m2 n+l m Iren-1 m-1 - 2 n/2 -"

Wn,(_m lim -12( z p a (1a ) 2(a, f)dp) ."-

and with the first of Eqs. (58),

S 2(1 m+n+1+(n/2) a pm-a m-1
imO '&c n(zg2(Aa, *))dp) )iWmn, 2- (-I) llm ( f z2(,)d (77)

Along the portions AB and DE of the path around ABCDE, * - -w and

* - +v, respectively; p(f) varies, respectively, from zero to

p(-r) - p(w) and from p(w) to zero. Substituting Eqs. (76), one

then obtains (for the two portions combined)

2 2(m+n+(n/2)l nn-1 M(r) mr-1 n+1 P(w)n-2 m-3
"S zOm[nz pa dp + (m-1)z p a dp]

z.WO f f;. 0 0 "'

The first term in the bracket vanishes for all even values of n;

for n - 0, because of the factor n 0 0, and otherwise because of

the factor zn- 1

For m > 2, the integral in the second term gives a bounded

quantity. In the limit z 0 0, the expression vanishes because of

the power of z. For m - 1, the second term vanishes because of

the factor (m-1).

For m - 0, one goes back to the first formulation,

Eq. (77). Again substituting Eq. (76), one obtains for the

integral along AB

,rz n (p 2 + Z 1

Forming Iim - (.)gives 0 for n > 2. , -
z+O 3=

For m 0, n 0, one obtains

Fomig i.iiC) ,'ies,'or11 :.

(p +z) 1 2  0

42
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L i

for this limit. Accordingly, the only contribution of g2 for the

portions AB and DE of the path is encountered for m - 0,
n - 0, and one obtains

-2weB2 (78)

For the portion BCD (which is the map in the p plane of the

contour of the &n-element) the expression, Eq. (77), is written in

the form
m-1 3n m-1 m-1 n m-1 a.".

B2 mn+-+(n/2)d1 P zg 2 -(z a )dp + Pm: z a - (z92 )d3 p

Here p A 0. The derivative a(zna m )/3 z vanishes in the lir z+Ofo•l inadn,(a zi°(za(ni /zvaihs ntei -

for all m and n, ( al/z is found in Eq. (59)). In the second
in-iintegral, lima m - 1. If the integral is bounded in the limit

for n 0, then it will vanish for n > 2, (n even) because of the

factor z. Already substituting Eq. (75), one obtains for n - 0,

m + tg( /2) (79)

z+ 4p 2 tg 2 /2

For the vicinity of * - 0 the integrand behaves as * . It can

be shown that one obtains the correct lim z+O by taking in the

expression

82(-)m / pm-lcot(#/2)dp (80)

the principal part.

The use of the principal value in Eq. (80) is justified in

the following manner. First, one excludes from the region of

integration c-neighborhoods of the points where 0 - 0. Outside of

these neighborhoods, one can make the limiting process z - 0 and

obtains Eq. (80). It remains to show that for every value of z,
the contributions of these neighborhoods tend to zero as c+0. For

this purpose we set
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the residue is al. Furthermore,

1og("2 ) = l0gl 21

log(0 1 ) " logl0l

Denoting by P the principal value one finds

*2 (a a0 gj + 1 a0do a[og

Pl a 0(aI1 1 1 21 l og 1  + 2 01)

2 2
a 1(1 0 1

In every situation of this kind the integral will contain a

logarithm. The contribution of the residue is automatically taken

into account by taking the absolute values of logarithms.

This makes an additional step possible. In the integral in

the complex plane

2 02
2 2 ( ) m-1 ..''

Wm,O 2  1 cot(0/2)(dp/do)d.

*1 0m,0,2°

an integration by parts is carried out. Then

.1-

WM,02 2(-)m m - 1 pm cot(f/2)I

WmO2 m - m~m001 1•'-.

1 o d - i residue

f 1 Cos-

Taking the above example and carrying an integration by

parts one obtains

45
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(a + a + a 1 )d.

02 02 -1

# *(a 1 - 1 + a + a,) f f (a 1  a )d.

01 01

The integrand after the integration by parts has the same residue

as the original integral. Again, one takes in the analytic
expression for the resulting integral the absolute value of the

logarithm.

If one carries out the integration only along a portion of

the contour, then one must of course include the expression

outside of the integral. If one makes this integration by parts

along all sections of the contour, then the terms outside of the

integral cancel each other.

The same integration by parts can, of course, be made for a

contour of the &n-element for which A A 0 everywhere. Thus one

can always write. 2 (-)
w ...) (1 - cos) d (n- 0), m > 1 (81)

if one uses for the individual sections of the contour, analytic
expressions for the integrals, substitutes the limits, and takes

the absolute values of the logarithms which may occur.

For m 0 0, n - 0, the evaluation of the expression Eq. (80),

now given by

2 p 1 cot( /2)dp

is carried out as follows. One has

cot (0/2) -(1 +coso)/sino - -(1 -cosa)/sinz
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11P

We defined C-x - p cosa, n-y = p sina. Accordingly,

P-1cot(0/2)dp = - - 2(n-x)pdp

p2 (n-y)

The second integrand is transformed into

2(&-x)[(&-x)d& + (n-y)dn]/Cp2(nl-y)) ;_.

2 2
- [(&-x) dE + ( -x)(n-y)dn]/(p (n-y))

2 2 2
Here (&-x) is replaced by p _ (n-y)

One then obtains

(dt/(n-y)) + ([(-x)dn- (n-y)d ]/p2 ) = (d&/n-y)) + de

For points xy outside or inside the En-element, one has,

respectively, do = 0 and do = 2n. The second expression

cancels the contribution to w0 ,2 shown in Eq. (78). Moreover g,

0 for m - 0, n 0 0. Thus one obtains, generally,

- (d/d) (dP/d) d (82)

For (n-y) - 0,

dp - d~sign(&-x)

If n-y = 0 and (&-x) < 0 (x in the wake of &), a singularity will

arise and the expression must be interpreted (according to the

above discussion) as principal part. In the discussion following

Eq. (78) we found that

win,2 = 0 for even n > 2 (83)

4J7
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The portions AB and DE of the contour in the p,f plane start at

p - 0. There, * = -i and +v, respectively, and one has to form

according to Eq. (59)

i {z( - ) m n+1 2 P(-') m+n-1 1
lim mn pm+n- a-[g l (a , - l r) - gl(awr)]dp

~0Zz O 0 
W

S. a [g 1 (a,'-,) - 1(a) )dP

0

Forming the limit z4O one replaces in the first integral, a by 1.

The second integral vanishes because of the factor z if m+n > 3.

We are discussing cases for m+n > 1 and n even. Since n is even,

m+n-1 implies m = 1. Then by its definition, Eq. (71)

Si (cos* - a)(a - cos )-IdO - -o

and one has to form

P-ir) P (-i)

im z a- 1 dp lim _p2 z2 1/2

z + 0 0 ( 00 
.. 

3'
0

l i z2 ) 1 1 2 + z z 1 /2 "P( -"

z+O (p2 Z

0

This is the same as if one had set a 1 1 in the a-1 dp. For

m+n 2, one has either n - 2, m - 0, or m = 0, n - 2. In each

case one deals (except for the sign) with an integral

(a,) -os - a2 dO = (cosO + a)d$ = sin * a
cos* a

-49
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Then gl(a,w) - g (a,-w) - 2wa and one has to form

lim (z p2rdp) - sp2(i)
z.

One thus obtains in all cases as combined contribution of the

portions AB and DE due to gl

02(_)m n+(g 1 (1,_) - gi(1,+I)(m+n) - p W)

This expression cancels the term outside the integral in Eq. (85).

One thus obtains (after returning to a) Ir
2 1 mB2 mm n)-

w2 ( Jm+nmosa sinn (a)[1 + cosa]-Ida, (86)

even n > 2

Since, according to Eq. (83) Wmn,2 0 for n > 2, this is wmn

(rather than w )" Moreover
En, 1

m 1 m m 1 n 0W 1 2 m-1 J p (cosma - (-1))[1 + cosa]- da n 1m'O'' m > 1

This is combined with the expression Wm 0,2, Eq. (81). One then

obtains

mO, mO 2 2 1  mP smi
W - + cosCa] -da, (86a)

if, as was stated above, one uses for the individual sections of

the contour analytic expressions for the integral, substitutes the

limits and takes the absolute value of the logorithms, if they

should occur. Actually, with this interpretation Eq. (86) is

generally valid.
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These results give the contribution to K obtained for the

power zero of the frequency k, which will be indicated by a

superscript. In the original coordinates one obtains

0 (xy) - 2 (m+n) 4 (x)n-y)n[p(p+(E-x))]-1 [(&-x)dn-(n-y)dE I
(87)

except for m - 0,

For n odd, this is a repetition of Eq. (69). For n = 0, one must

follow the procedure described after Eq. (86a). N
Furthermore,

;-(xy) 82 4%(dE - dp)(n-y) (88)

Eq. (51) gives the result for the first power of the reduced

frequency. Introducing again the form Eq. (52) for Ap considering

a single term and carrying out the integration with respect to p,

one obtains

w 1 (m+n+l) - 1 J(&-x)m(-y)m-l[(F-x)dn-(n-y)d&]  (88a)wrn

The results of these discussions can be summarized in a

simple manner. We assume that for x,y fixed, Ap has the form of -

Eq. (51), i.e., a development in powers of (C-x) and (n-y).

Except for m 0 0, n 0 0, the correct expression for the upwash at

z - 0 is obtained by setting z - 0 in the expression for K. One

then has to evaluate integrals

I - JJ F(g-x,n-y)d~dn (89)

For z 0, one has R -p. Let

E-x - cosa

n-y - R sina..-
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For one of the summands in Ap and one power of the reduced

* frequency k, the function F has the form

F - Rqf(Q) (90)

Then

I ff R qf(c)RdRdo ~*

(q+2) (a)da

or in terms of the original coordinates

I (q+2) - ' F(E,n)[(E-x)dn-(n-y)dE] (91)

If q -- 2 (i.e, for m - 0, n - 0 and for the power zero of the

reduced frequency), the procedure is not feasible. The
integration with respect to R gives log R. The limits for R are 0

and R(a). The lower limit gives infinity, which is an indication

that this simple minded procedure fails. Here it is necessary to

proceed in the manner described above; one carries out limiting

process z+0 only after the integrations with respect to t and n.

(or p and a) have been carried out. This gives Eq. (88). Another

limitation of this rule arises if n - 0, m > 1, the power of the

reduced frequency is zero and if along the contour n-y becomes
2zero. Then the integrand will contain a denominator (n-y) , and

the integral becomes nonsensical. One then has to apply the

procedure described after Eq. (86a).

In K1 , one finds terms which, after one sets z - 0, gives

rise to integrals

I - log (n-y)F(,-,n-y)dFdn (92)

%
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where F has the form assumed above. Then

I - Jlog(Rsinci)R q'f(a)dRda

-J(log R +log sincz)R~4 f(ci)dRdcz

-(q+2) f f(a)R q+2 [ logR(ct) - (q+2)- [lhog sinac)]dcx

This is written in terms of' the original coordinates

I -(q+2)- F(.n)1og(Ti-y) -(q+2)- ][(E-x)di (r-y)dE] (93)
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R 7. I. --

SECTION V

THE UPWASH AT A GIVEN POINT (x,y)

We evaluate in this section the upwash at a fixed point x,y

due to a pressure distribution in a given &n-element. To each

triangular or trapezoidal elements belong, respectively, 3 or 4

elemental pressure distributions. The results can be expressed in

terms of elementary transcendental functions, provided that the

elemental pressure distributions have the form of polynomials in "

and n. These formulae will be needed if (x,y) lies within or in

the vicinity of a En-element. For triangular element and Ap

linear in E and n, one obtains pressure distributions which are

continuous at the common boundary of neighboring elements. For

trapezoidal elements, one can achieve only imperfect matching even

if one uses terms of higher order in E and n. Except for this flaw

in the basic data, the analysis is independent of the shape of the

elements.

For triangular elements the corner opposite the side that is

parallel to the E axis has the number I, from thereon one proceeds

in the counterclockwise direction. The elemental pressure

distributions are then given by

_() (i) (i) (i)
,,p 1,)) - c0  c1 (5- I) c2 (n-n I) i = 1,2,3

where

(1) (1) (2)
c = 1, c , - (

(2) (2) -1 (2) -1

e0  1 0, e1  = D (n3 -nI ), C2  - -D

(94)
(3) (3) -1 (3) -1--
c0  - 0, c1  - -D (n2 -n1 ), c2  - D (2-5)

D " [( 2 - 1 )(n 3-n1 ) (&3-EI )(n2-nl ) '

5 4~
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The upwash is evaluated separately for these three %

expressions Ap (i)

We shall write during the derivations of the formulae

E (i) )m 
.n-

For triangular elements one has in particular

Ap({,n) = coo(X,y) + c1 O(-x) + c01 (n-y) (95)

where

ci) (i) (i) i)
c0 0 (xy)=c 0 +c 1 (x- 1 ) + c2 ("

Ci) (i) (i) (i) .

010 '01 c2

Later, in integrations over x and y, each of the expressions

i) Mi) CW) (i)
Ap (x,y) -Co0 (x,y) + 1 0 (-x) + 001 (n-Y)

will be used in three different forms.

(i) (i) (i)':-:

Ap (x,y) - 6+ cO (x-&j) + c 1 (Y-nj) (96)

Here the subscript i refers to those corners of the {n-

element for which the elemental pressure is 1. (For the other

corners the elemental pressure is zero); j is the subscript of any

of the three corners when it is used as origin of a x,y-system.

The discussion of the limiting process z+O in Section V has

led to integrals around the contour of the &n-element which give

the upwash at a fixed point x,y due to a pressure distribution

Ap(i ({,n) If the point xy lies in the interior of the &n-element

or of its neigbbors then the integrands of these expressions are
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analytic functions except for well defined singularities. The

author hoped originally that the smooth part of these integrals

could be evaluated numerically. But upon closer examination, he

realized that for a point (xy) close to the boundary of the &n-

element the integration over & and n will encounter difficulties in

spite of the analyticity of the integrands. Fortunately, the

integrals can be evaluated in terms of elementary transcendental

functions, although one obtains fairly lengthy expressions.

The difficulties arise in the following manner. The

integrands are analytic for real values of the variable of

integration, but in some vicinity of the origin they have

singularities (poles and branch points) at complex values. As the

point (xy) moves closer to a boundary of the n element the

interval of integration extends farther and farther along the real

axis (if one keeps the singularities in fixed positions). One

might then divide the region of integration into a section close to

the singularities and a remaining part. But even the second .-4

section is not well suited for numerical integrations. Let z be

the variable of integration and f(z) the integrand. A suitable

variable of integration in the outer region would then be 1/z and

one must form 24

- z  f(z)d(1/z)

where (/z) is the variable of integration. This works well only

2
if z f(z) is a regular function of (l/z) for l/z 0 0. The terms

which violate this requirement are fairly easily identified, so

that one could treat them separately. But since an analytical

integration over the whole range is possible it appears more

practical to follow this course. Naturally, once programmed one

will use these formulae also if the point (x,y) is not close to the
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element boundaries. Later this procedure will make it possible to

carry out also the integration over x and y analytically. The

integrals to be evaluated are given by

J Ap( -n)K(&-x,n-y,k)ddn.:

The function K is found in Eq. (B.63)

K - exp(ik(&-x)[K 1( -xr,k) + K2 (-x,r,k)]

where, according to Section IV, r can be replaced in most cases by
in-y.

We have introduced

Ap( ,n) - exp(ik )Ap(E,n) (97)

Within the elements Ap( ,n) is represented by shape functions which

are linear in and n. The infinite sums in K2 can be truncated

after only very few terms, because k is usually small and because

the present discussion refers to points (x,y) within or close to

the en-element. In the following term of K2 the exponential

function is expressed as a power series.

(RV)-1(exp(ikV) - 1) - ikR -1  (ikV)'-I/!-

In Ueda's formulation one finds a similar term namely R(V + r )2

exp(ikV). The present simpler form arises from a combination of

this term with other expressions of K, (see the discussion

following Eq. (B.59). In the present context this brings about a

considerable simplification in the integrations. In the procedure
of Ueda and Dowell the simplification is only minor. All terms of

K2 can now be brought into a form
-1 -a

P(&-x,n-y) + R P( -x,n-y)
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where P(C-x,n-y) denotes a generic expression for a power series in

their arguments. In practice one deals with polynomials.w

We shall derive integration formulae for the lowest powers of

the reduced frequency k of the development of K, namely kO, k,

k2logk and k2 . For a portion of Ap given by (x)m(y) n , we

shall denote by It the integral over the &n-element. The
mnsuperscript L refers to the power of the reduced frequency k. Iron .

does not contain the factor (8w) - exp(-ikx). After substituting

Eqs. (B.66) and (B.67) one obtains the following expression

-o . 2 m n)r - (- ,.

m0n -8 JJ(C-x)m(nyn)r-2R-1 (R (-x))d~dn; m+n > 1 (98)
mn..

(The case m 0 0, n = 0 has been treated separately.)

mn ik -x) m ( n -y) n R- dd n ; mn > 0 (99)

i2n k ff( x),(nY ) n [ C  - (-2 ( -x)R-  )

(100)

+ (log(k(R + (&-x)))]d~dn

* Here,

2 2 2 2 1/2(0)r - (n-y) , R - [(&-x) + (n-y) (101)

The function V which occurs in Eq. (B.67) is found in one of the

Eqs. (B.61).

-2C = -(1/2)[0,(I) + *(2) + log(1-M) + 21og2 - iw + B-M] (102)
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" Then, according to Eqs. (89), (91), (92), and (33)

10 2 132(m n)-x)m i ".>n-2
mn 2 1 (- (-n- 2R- (R-(C-x))[(E-x)dn-(n-y)dE] (103)

- -ik(m+n+l) " 1 (E-x)m(n-y)n R-l[(&-x)dn-(n-y)dG] (104)mn:

(k 2 /2),m+n+2)- 1 w(Cx)"'(ry)njC(B-2 ( -Ix)R- >

(105) P i
-1

+ (log(k(R + (E-x))- (m+n+2) )C(G-x)dn- (n-y)dG]

The path of integration is the contour of the element. Practically

this means that we have separate expressions for the sides of the

triangular or trapezoidal element. Accordingly we write

-i 12i- + 23-t + 311L (106)
Imn mn mn mn

where the left superscripts refer to the end points of the sides

(as one travels around the En-element in the counterclock-wise

direction). We shall derive separate formulae for the sides

parallel to the E axis and sides inclined to the E axis. For a

* side of the En-element between the point i and i+l, not parallel to

- the E-axis, (where for triangles i+l 4 4 is understood to refer to

point 1), we define

t'%!

i'i+ 1 - ( i+I  - i)/(ni+ I  - ni) (107)

The subscripts of a will frequently be omitted. The expressions I

appear first as indefinite integrals. After substitution of the

limits of integration (expressed by Ei, i , and +i,i+) , one

obtains two expressions (x-&i, y-yi) and (x-Ei+ 1 ,y-iji + l ). Those

expressions will be denoted by

'ign (x-Ei Y-t1 1 ai,ii) and In(X-i~iv y-ri+19 ii+l)
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so that

i,i+ln = I g n (x-&i+ 'Y-)-i 1 'aiit+ I-mn (x-&iY-Titai,i+i) (108)
mn mn ilyr,10,ij m

Information about the side for which the expression is being

evaluated enters through the argument ai ,.:ii+I,

For the side parallel to the & axis, we insert 7r/2 as

argument of a. The expressions I(..a)(to be found later) tend to

infinity as a * w/2, but I(..i/2) remains finite. This happens

because of the occurrence of a-dependent integration constant which

tends to infinity as a+/2. They cancel as one forms the integral -

2 2 1/2
between points i and i+I. The expressions R = ((&-x) + (n-y)2)

will introduce branch points of the second order in the integrands.

We write

I2 ,I 1un (109)mn = mn m,n

The additional superscripts 1 and 2 refer respectively to the

absence and presence of such branch points. For a = w/2, one has

n = 1 = const, dn 0 0. Then we shall introduce, ..

- y = v (110)

(&-X) = W.V (111)

and consider w as variable of integration. For the power zero of

the reduced frequency, one has according to Eq. (90)

0 0 2  j - dR (112)

R is defined in Eq. (101). For a ij w /2 one has to evaluate

(because dn = 0).

i,i+1 0 i i+1 01 + 0,i+1 02"00= 00 00
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with

1,1+1 01 1+1
100 - Y)

Ey)i+1

1'i+1 02 82 dC

I0 " + I ni- - Y)

i I 
-.. .

Hence,

1,1+2102 ( '2
00n i  y

and with Eq. (111),

i~i+1 02 i+1
1'+ 2 2 2 -1/2
.100 = ~ sign(ni y) fw(w +1 dw

Wi~

2 2ig(n -y)(w 
2 

+1)1/2 W~

W i

If one goes back to the original variables, then one obtains

(w 2 1).2 sign(i y)R/(ni y)

because R is always positive. The sign functions cancel in the
original coordinates. This happens in all formulae. For
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simplicity we shall omit in future computations such intermediate

sign expressions. For future work it is convenient to introduce

X =x -i y y - 1 (113)
and

*U =-U, V= -V

Then,

1I00(X,Y,it/2) 0 8X/Y (114)

02 2
I (CX,Y,,r/2) - R/Y (115)

According to Eq. (103) one has to evaluate for w i/2, the power

zero of the reduced frequency k, and m+n > 1

i,i+1 10 1 ,1+i101 i,1+1 102
mn mn mn

with 1

i++1

= 2 (m+nf-1 (M+1) - 1(n = ~n-i (E-x) m+l

and

i mnlO. -8(m+n) 
1 (ri -) ff (E-x) m1R 1 d,
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With

W (~x/rj-Y)

one obtains

1'i+110 2 2 B(m+n)- 1  m - 2 + )-1/2 mi+1
n Y (W w dw

Formulae for the integrals occurring here are found in Appendix

C. Specializing to [m,n) [1,0] and [0,1] one obtains

012 2I0 (X,Y,,r/2) = B/2)X /Y10

02 21 C X, Y, i/2) =(0 /2)[(RX/Y) *Ylog(k(R -X)) (116)

01 2Ii (X,Y,ir/2) =BX01

1 02 (X,Y,ir/2) 2 R

The factor k in the logarithm amounts to a change of the constant

of integration. If the expression is written in this form, it will
not change if one changes the reference length L.

For a - vf/2 and the power 1 of the reduced frequency k one

obtains from Eq. (104)

mn -11 ik(m~n~l ~ 1 -R 1 (~xm n+1
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Again, w = .(-x)/ni - y) is introduced and one obtains

i+1

ii 111 ik(mfn+l)- 1 ( _ )m+n+1 (w2 + 1)- 1 / 2 wmdw
16 mn Cl

°° w,

These integrals are found in Appendix C.

I (W2 + 1) 1 / 2 dw log ((w2 + 1)1/2 + w)
J d.J

w ( w 2 1)-1/2dw ( w 2 + 1)1/2

One obtains

10 0 (X,Y,w/2) - -ikYlog(k(R - X))

10
"' 11 0 (X,Y,r/2-) - -i(k/2)YR (117) '

1 2
1 1(X,Y,r/2) . i(k/2)Y log(k(R- X)

For the powers k and k log k one evaluates according to

Eq. (86).

12,1 12,2 -2,3
m,n m,n m,n mn

with

i m+1-21  _(k2 /2)(m+n+2)_!C (t-X)1( ni d

1, 122 2ti+1 m+-n1
i, i1 1 2,2 (k2 /2)(m+n+2)-I (&-x) 2 (n y) n+R-d
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1,1+1123-

-(22 -1 cj n1 -

-(c/)(m~n-2) f (&-x) (flj -y) [1og(k(R & -x))-(m-n2) .]d&

Hence

100 (X,Yir/2) =-(k 2/4)CXY

21 2 2I1 (X,Y.,r/2) -(k /12)CX Y(18

101 (X,Y,ir/2) + (k2/6)CXY2

I122
and mn one introduces w -(E-x)/(ri, -y) in an intermediate step

adthus obtains integrals listed in Appendix C. Hence -

22 2 0-2[YR Y

I (XYw2) ( /12)B ~ LYR log(k(R -X)] (119)

22 2 -2 2
101 (X,Y,ir/2) =(k /6)0 Y R

Furthermore,

i,i+11 2,3 = 2(k/2)2 (n2)1 l(n Y)n1 I
Mn

with

&+1
I -f (C-x)m[log(k(R &-x)) -(m~n.2) -1 d&



Then

I -(M+1) 1fC(-x)m'[log(k(R + F-x)) - m~n+2) ']

m+ -
- J (E-x)m R' d~)

With w -(&-x)/(rji - y) one obtains for the last integral

expressions listed in Appendix C; in particular

-1,J( -x)R1 d& R

2 2-1 Y2lo
(&-x) R d (l/2)[(-x)R-(li - ylo(k(R E-))

Theref ore

'23 2
- (k/2) (llj - y)((&-x)[log(k(R &-x))-1/21 R);0

or

123( 200 (XYIT2-(k/ 2) YX~log(k(R -X)) -(1/2)] +YR} (120)

123( 2 2110 (X,Yir/2) =(1/3)(k/2) IYX [log(k(R W )-1/31

+(1/2) XYR + (1/2)Y log(k(R - X)I

I X,Yw/2) -(2/3)(k/2) (YX[log(k(R -X))-1/3] Y R)

This terminates the case a w i/2.
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For a # w/2 auxiliary systems of coordinates are used. The

"Sheared" coordinate system is defined by

us ()- (n-y)tgo, E-x - u s + V a tgQl (121)

v s a fl-y, T- v5

Along the side i,i+1 of an element one has

us u -u ~i const. =( -x) - r1 -y)tga (122)

Note that

(E-x)dri (n-y)d& u udv5 - vdus u udv5  (123)

(The last simplification occurs because us- const because along the

* side i,i.1, and therefore dus a 0.)

The "rotated" system of coordinates is defined by

u -(E-x)cosi (r-y)sine, -x -u cose + v sina
(1214)

v -(E-x)sina + (in-y)cosa, ii-y- -u sina +v cosca

Along the side i,i4-1 of an element one has

U-u 1  u 1+ const (125)

us COS 1 ca U, (126)

Note that

R (&-x) *(r-y) u ~v (127)
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Therefore,

(FE-x)dE + (n-y)dn - u du + v dv - v dv (128)

The last simplification occurs because u -const along a side

ii+l. Moreover

(E-x)dn (v-y)dE u dv -v du -u dv (129)

* We shall furthermore introduce

W v/u1  (130)

and.
8 arctgw =arctg(v/u) (131)

Then

sine -v/R

(1 32)

cose -U 1 /R

Hence,

sign(cose) =sign uj (133)

Moreover,

sin(e-g) ( v coscz u usina)/R- (ri-y)/R

(1341)

cos(e-x) -(u icoscz v sirux)/R - Ex/

The basic formula for a A wr/2 and the power zero of the

reduced frequency is quoted in Eq. (112). We introduce the rotatedr
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system of coordinates Eqs. (1214) through (129) and Eq. (130).
Writing

I, i+1 yO i,i+1101 + i,i+1102
00 00 00

* one obtains

1,+101= 2sin~x(w cosa -sina) dw (135)
00 f

w i

Wi+ 1*i,i+l-02 - 2 ig u (wcosa - 1 2 -1/2
100 -ig u1  ,sincl) (w +1) wdw (136)

Eq. (135) gives

Wi+ 1

1,1+101 82tga log(w-tga)

Introducing 0, Eq. (131) one obtains

01+1

=Btgci log (sin(O-ci)/cose J(137)
001

*In Eq. (136), 0 is introduced immediately. One observes that

(w2  1)1/ sign(cose)cos1e
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Then with Eq. (133)

i,i+1-02 ,
00

(138)

21+1 sinedo+1 -11 -
osin~e . _2 *[tga sin(O-a) + cos cos eide

cos8sin(B-i CoJ ose

2 I  -1 ---1 -1

-- 2{tg log[sin(e-a)(1+cos(e-a))- 1] + cos- 1log[(l+sine)cos- 8""

Combining the expressions Eqs. (137) and (138) one obtains

i'1+1 1 0 2 ftgalog((1+cos(e-a))cos- 1)
00

(139)
81+i .-

- cos -  log( l +sine)cos0 ) } I

We return to the original coordinates, but partially retain ui.

Again the definition Eq. (113) are introduced. In addition we set

V - - v - Xsina + Ycosa (140)

U u - u - Xcos - Ysin.,

Then (with a different constant of integration)

0 2 -1

I 0 (X,Y,Q) - 2 {tga log(k(R-X)) - cos 1 log((R - v)/IUI).

R - (X2 + y1/2 (141)

The basic formulae for the power of the reduced frequency 0
and m+n > 1 is Eq. (103). We write

10 -101 102
mn mn mn
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--n n-2 (11-2
Ion 0 2(m+n) (Ex) ny) [( -x)dn- (n-y)dt] (142)

V02 mn -2(m+n)- ( -x )m + l (n -y)n -2 R - l[( -x)dn - (n-y)dt] (143)

For n - 1, the integrand contains a factor (n-y) - . The

integrals are then interpreted as principal values.

-2For n - 0, one has a factor (n-y) - . In Eq. (103), (from

which Eqs. (142) and (143) arise) no singularity is encountered if

t-x > 0. The singularities in Eqs. (142) and (143) appear because

of the separation into terms with and without R. The separation is

necessary for the derivation of analytical formulae. In the

evaluation of the integrals one follows the procedure described

after Eq. (86a).

Introducing sheared coordinates, Eqs. (121) through (123),

one obtains

vi+ 1 ..
i,i+1 1 01 2(m+n)-I f (Usi vstg)mv n-2usdV

mn = s 

m
Developing (usl + Vstga) one obtains elementary integrals.

Specializing immediately one obtains

si+1..-

ii+1101 " 2[-(u 2/Vs) + tga usloglkvsl (144)
1,0 2 si S u5 i Ik~l

Vsi

vsi+ 1
ii+1101 2u logjkv' 01 " 8 s l g k s i .-.,

Vsi "-,

These expressions will be rewritten in terms of Y and U in

Eqs. (147).
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The evaluations of ,+ 02coordn ates ou Imn uses the rotated system of
coordinates Eq. (124) through (129). '

v i+1

i,i+ -2 8(m+n)- J (ucoso + vsina)m+l 1:• mnv.

vi

n-2 2 2 -1/2(-uisina + v cosa) (Ui V 2)Iuidv

and with

w v/ui

2 i+n +
ii+[02 = _2(m+n) u f (w sini cosa)m

2. mn .

Wi

)n-2 2 -1/2
(w cos -sina) (w +1). dw

For n > 2 one writes the product of the first two terms in the

integrand as a polynomial in w. One then obtains the expressions

treated in Appendix C. For n < 2, one must carry out the division

which gives a polynomial (of rather low order in w) and remainder

terms with denominators (wcosa - sina)(w + 1). and
2 2 1/2(wcos -sina) (w + 1) /  Also these integrals are treated in

Appendix C. For the case m - 1, n 0, one has

2 -(wsina + cosa) (wcosi - sina) 2

2 -2 -- 2 -2= tg c + 2sina cps -a(wcosa - sina) + cos -a(wcosm - sina)
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Then with Eqs. (C.16) and (C.17)

ii+1102 2 sign(ui)uitg2a log((w 2 + I)1/2 + w)
10 i 1)+ 1

+ sina cos-2 sign(cose)log[sin(e-a)(1+cos(o-a))- 1

-cos 1 asign(cos)sin -.(e-a))

The sign functions cancel because of Eq. (133), as can be seen from

the following discussion

2 W/2
sign (ui)log((w + ) + W) -

2 2 v)1/2 (iniv/u(sign(ui)log[(u i  V + (signu )v)/IuI]

The sign function can obviously be omitted if sign (ui) - +1.

Consider now sign (ui) -1. Then one obtains for the right-hand

side

2 1/2 2 2 2)1/2
-log[(u v ) - v)/Iuil] . -log[u1 /luil((ui + v V)]3

- log[((ui2  v2 )1 /2 + v)/iuiI

Therefore,

2 1/2 2 2 1/2
(signui)log((w 1). * w) - log[(ui + v + v)/IuiI]

One thus obtains (with a change of the constant of integration)

ii 02 0 2 2 2 2 1/2
10 ui{-tg et log[k((u + V + v)]

(145)
i+1

-2 -sini, cos2alog[(n-ni)/(R & -x)] cos-lR/(n-y)}

i
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1~

One has for the case m - 0, n - 1

(wsin + cosa)(wcosa - sin)-1 - tgM + cos- a(wcosa - sina)1

Therefore

i 1-021 , 2ui{-tgclog((R+v)luil )1
01 1 1

(1146)
1+1

- cos a log((n-y)[R + (&-x)] 1 ) I
I--

Collecting these results (Eqs. (144), (145), and (146)) and

replacing u i mn by cos a U one obtains

01 (XYa) 2 (Cos a (U2 /Y) - sina cos a U logjkYI}
(147)

01 2 -1
101(X,Y,a) = -Cos .- U log-kY

(In these equations a term log (cos a) has been omitted because it

can be incorporated into a constant of integration.)

02 2 2-

1 0 (Xya) 2 2U{tg2 a log((R-V)/ IUI) - sina cos- a log((R-X)/IYI)

1-1
+ cos a R/Y) (148)

02 2 -1
101(X,Y,O) - B UftgQ log((R-V)/Iul) - cos a log((R-X)/YI)

See Eqs. (113) and (140) for the definitions of the variables.

For the power 1 of the reduced frequency k, one starts from

Eqs. (104). Introducing the rotated system of coordinates

Eqs. (124) through (129) one obtains for a 12.
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-ik(m+n+l)- V1 .l2 v2)-1/2 ( v sina)M

(-uisina + cos) nuidv

and with

W V/u i

-1 m+n+l 2 1/2 cos
di.n -ik(mnl) ui f (w 1). (wsin m

(wcosa - sina) ndw

Hence

S10(X,Y,a) = +ik U log(R-V)/IUI

I (X,Ya) - +i(k/2){sina UR - cosa U2 log((R-V)/IUI) (149)
I1 2 PM ''-',.

I1 I(X,Y,a) = +i(k/2)(cosa UR + sin U2 log[(R-V)/IU I ]

Eq. (105) is the basic formula for terms of order k2 and kl2ogk.

We write as before A

i2 =21 + -22 + -23

mn mn mn mn

121 is treated in the rotated coordinate system. The results can
be obtained in the "sheared" system of coordinates, but this

complicates the limiting process ct/2.
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m,i*1y21 (k 2/2)C(m+n,2) f (sinav cosau) m

mnn
vi

(cosav - sinau) n u dv
5'

Hence,

212
1 00 (XYc) - (k2 /4)C UV

121(X,Y,a) - (k2 /6)Cf-cosa U - (1/2)sina UV2 }  (150)10

I0(X,Y,a) - (k2/6)C + U - (1/2)cosa UV2)

122 is treated in the rotated system of coordinates. With w - v/uI  ,

one obtains

,2-1 ren+2 (w2 1)-1/2
+11mn - -B2(k2/2)(m+n+2) u i  J.f

Wi

(wsin + cosa) 1 (wcosa - sin) dw

One has

for m 0 0, n - 0

WJ2 + 1)-/2 (wsina + cosa)dw - sinc(w + 1) 1 2

+ cosa log[(w 2 + 1)1.2 + w1,

for m -I, n - 0

(W + 1)- (wsina + cos) dw - (1/2)sin 2w(w + 1)I12

2sinacosa(w2 + 1)/2 + (Cos2 - (1/2)i )lo[(w + 1)1 + w]I
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and for mn 0, n i

((w2 + 1) -12(wsina + cosa)(wcosa -sina)dw

CO/)snacswI.w + 1 + (Csa - sin CO1 +(w

Threor-(3/2)sina cosa log[(w + 1)1/ + C]
122= 02(k2 /4)(sina U R -coso 2 log((R-V)/jUI)}
100

22* 2 2 2 2K 110 - - (k /6)[U1/2)sin a UVR + 2sina cosm U R

23-(1/2)(3 cos a - 1)U3 1og(R-V)/IUI) (151)

22 82 2 2 2 2_01 (k /6)(1/2 sina cosa UVR + (Cos a -sin a)U R

+ (3/2)sina cosa U3 1og((R-V)/jUl)

Using again the rotated coordinate system one obtains from

Eq. (104s)

1,11n2 (k /2)(in+n+2) - 1 (u cosa +vsina) 
11(-u sinct +VCOSQ)

Elog(k(R +u cosm vsina)) -(m+n+2) 'uildv (152)
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and with w -v/u 1

i~i+lI23 -(k 2/2)(m+n+2) 1 u mn+2

(153)

f (wsinct + Cc)n(wcosa sinci)n1 [f(w) -(m+n+2) )ldw

where

f(w) -log(ku)* logC(W2  1)./ wslinc *Cosa]i

Let

- f w'~f(w)dw (1514)

Then

i.1+1123 - 2 2 1+1)v00 C/)[ 1 C 0 -

i-~I3 ( 2/)cs 3Q+snu 3 QJ.10 U4  0~ * ici
.1 -4 U2 (155) 1

-(1/3)cosg u12 v - C1/6)sina uiv2 ~+

i~i~li2 (k 2 /6)[-si nzu 3 Q0  + Cosax u 3 Q

+ (1/3)sini u 2 v -(1/6)cos u ~

One has

Q (Jl -1 Jwilr(w) -Jwj~lf'(w)dw]

Here 
.S

f (w) [ (W 2 1)112 Wsina +Cosa]) [w(w 2 )1) 12 ini
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Multiplying numerator and denominator by (w2 + 1/2 (wsinci

cosci) one obtains

f(w) -Ewcosci - sinc) U[W2 + 1)1/. (wsinct + Cosai)]

Cw + (w 2 + 11/2 snlw2 + 1) -1/2

-12 -1/2f'(w) - [wcosci - sinci] [Cosai - (w )

Then, for j - 0, after dividing w by Ewoosci - sinci]

Jwf (w)dw f OO +~oci tgci(wcosci sinci) 1 -osO [2 1) 1/2

and with Eq. (C.16)

wf(~w-w+tgci log(wcosi sinci) -Cost 20l ( 1/2 W

-tgci log[sin(e-i)(1 cos~e-i)) '

here

e arctgw

Moreover, for j-1, again, after carrying out the division

w2  (wd ~cs- 2 2 -1
w (~d [CO a+ sinci cos Oi tg ci~ucosci sinci)

[Cosa (w C 2 + 1) -1/2Id

22 2w wf wdw (wC /2) + tgci w +tg ai log(wcosi sinci)

-o 1 cw 2  )1/2 -2 a lgw 2 
+ 112

2 -- tg ai log~sin(e-i)(1 cos(o-i)) ]
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By substitution of w -v/u 1 one obtains

f-log~kluil) + log[((u1  + V2) 1  + U Cosa +vsina)/IuiI]li

f - log(k(R + -x))

f w(w)dw - v/ui + tgct log~k(ri-y)] -cos- a logtI(R4v)/IuiI]

-tgal log[(ri-y)(R + &-X) 1

Jwf Cw)dw - v/ut Cos 00 a log(CR+v)/1uil) + tgo log(k(R (.-)

2 2-f ~(w)dw - (1/2)(v/ui + tga(v/u) Cos0 a(R/u)

-2 2
-sinacos a logL(R~v)/IuiI) + tg a log[k(R+(&x]

-(V/U -tga)log(k(R-X)) -V/U + Cos- o(R-)~1

Q (1/2){(V/u) 2 tg 2a)log(k(R-X)) +sinci cos2 a log((R-V)/IUj)

-(1/2)(V/U) 2 tga(V/U) -Cos- a(R/U)l

and rewriting Eqs. (155)

I 2(X .Yac) - (k 2/4)(U 2  - (1/2)VU))

I i(X ,Y,ai) - - (k /6)[cosct U Q0 + sina U Q,

-(1/3)cosct U V - (1/6)sina U

1 01(X,Y,a) -(k /6)(+sina U Q0 - Cosa U Q1 .011

-(1/3)sint Uv V C 1/6)cosaU
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SECTION VI 0"

INTEGRATIONS WITH RESPECT TO X AND Y

With the formulae derived so far, the upwash at a given point

x,y can be evaluated in terms of the parameters that describe the

pressure distribution. One still has to carry out the integration

over the xy-elements. This can be done numerically or

analytically. The upwash has singularities as the point x,y

approaches the boundaries of the &n-element or of its wake, and

special provisions must be made for the terms which give infinities

in the upwash. Aside from this one will obtain good results if one

uses a sufficiently large number of points xy.

The analytic procedure will be shown in this section. In a

numerical approach one will add all (or nearly all) contributions

to the upwash before the integrations are carried out; in an

analytic procedure one must keep them separate. This gives quite

lengthy lists of formulae.

The upwash formulae have arisen from contour integrals around

the &n-element. The individual expressions are functions of

X - X-il, Y -yn i and ai ; variables U and V are considered as

functions of X and Y. The &i's and ni's are the corners of the -V

element, ai i+l gives the slope of the side of the &n-element for

which the integration has been carried out. The general

expressions (for a A w/2) fail if one tries to substitute a - w/2.

Separate formulae for a - w/2 have therefore been derived. The

limiting process a*1r/2 is shown in Appendix F.

The contribution to the upwash for the form of the pressure

distribution assumed here is given by

p(x,y)I00 (X,Y,a) + c1 0 110 (X,Y,a) + 01101(XYa),

but

p(x,y) - p(i,nji)+(x-&i)cO+(n-yi)c 01
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*4,*

Thus, one has to evaluate expressions

P(Eij i) ff Ioodxdy + c 1 0 f I1 0 dxdy + c0 1 ff I0 dxdy (156)

with

110 I 10 + Xl0 0  (157)

0 101 + 
I 0

The integration is carried out over an xy-element. The

expressions I consists of a number of summands all of which, except

those that contain a factor log (k(R-X)) appear in the form,

G(xy) - R f(e) (158)

if written in polar coordinates R, 0. Inspecting the expressions

In one finds, thatmn

S= (i + m +n)

The integral over an xy-element then assumes the form

f JG(x~y)dxdy - f R L+1f.(e)dRde

Here the integration with respect to R can be carried out; the

contribution of the lower limit R - 0 vanishes because Z > -2;

subsequently, dO is expressed by dO - (x dy - ydx)R - 2 . Therefore,

G(x,y)dxdy - (1+2) - 1  G(x,y)(xdy-ydx) (159)

where the integral on the right is taken along the contour of the

xy-element.

The expression containing the factor log(k(R-X)) has the form

G(x,y) - g(x,y)log(k(R-X))
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where

g(x,y) R f(e)

Therefore,

G(xy) - R f(6)[log(kR) + log((R-X)/R)]

The second term in the bracket depends only upon 8. Therefore,

G(xy)dxdy - Rt f(e)[log((R-X)/R) + log(kR)]de

- (t+2) -I  f(e)({RA 2 [log(R-X)/(R) + log(kR)]) ( R+1dR)"de

0
Hence,

If G(xy)dxdy- (1+2) - 1' [G(x,y) - (1+2)-lg(x,y)](xdy-ydx) (160)

We introduce an angle Y which gives the direction of one side of

the xy-element.

x -x
i i+1 (161)tgyti,i+l Y ::Yi+l (161

For integrations which are to be carried out along the sides of the

xy-element we introduce coordinates p, q:

X - p cos Y + q sin Y ; p - X cos Y - Y sin Y

(162)

Y - -p sin Y + q cos Y; q - X sin Y + Y cos Y

Along such a side p is constant; the variable of integration is q.

The expressions U and V had been defined by
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X - U cos a + V sin a ;U -X cos a -Y sin a

Y - -U sin a + V cos a; V -X sin a + Y c0s a (163)

For the integrations U and V are expressed by p and q

U -p cos 6 + qsin 6 p p-U cos 6 - V sin 6

(1614)
V =-p sin 6 q cos 6 ;q U sin 6 V cos 6

with

6 Y a (16J4a)

*In the integration along the sides of the xy-elements expressions,
xdy-ydx will occur. One finds in general

XdY-Y4X -pdq-qdp (165)

and since p -conat

XdY-Ydx =pdq

Now we summarize the results of Section V (i.e., the formulae

for the functions 1 6 and I i6 and 1 01 ) in a form suitable for the

*integration. For this purpose we introduce

-log (k(R-X)) -log (R-X)/IYI) +log (kIYI)

-2 log (R-V)/IUI)

(166)

#4 RY1

*51

-6 R
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These expressions will be regarded as functions of p and q. The

expressions I** are linear combinations of these functions with

cofficients which are homogeneous in U, V, X and Y. (The explicit

dependence upon X and Y occurs because we have to form

110 - 110 + XI0 0 and Iol- 101 + XIo0 .) These coefficients are

considered as scalar products, written as products of row matrices

and column matrices. The row matrix depends only upon a, the

column matrices are homogeneous functions in (U,V,X,Y). In the

following expressions, only those terms actually encountered in the

expressions I are included. We introduce

[w]  [u'x'Y]

(167)

Lw2] -[U2 ,UVUX,UY]
+

Lw3 ] - [U3,U VUV ,U X,UVX,U YUVY+]
3

The row matrices belonging to a function I (or I ) are denoted bymn mn
c with the same indices as the function I and a third subscript

referring to the function * to which they belong. Notice that the

coefficients occurring in a specific function I may be of different
degree, because the functions have different degrees in U and V.

Only some of the function * will occur in a given expression I.
0 0For I0 the matrix [wO] and the vectors C00 l.. are scalars.

These expressions are written down directly. One then obtains the

following list.

0 2 -100  2tg0 1  cos - 1 02

- 0 01 10 01 + [c10 1 ]wI]) I + Lc1 0 ,2 L[wi]0 2  (168)

+ [c0  3 ][w2 ] 3 + [0

SI0 1 1,4]w1104
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'in [00n,2 ][w1 ]¢2+ E c (168)1 n 2 2 mn,6 mn = 1 (cont'd) I 02

2 2 02 2 ]02 5][w2]05 [co2 ,6][wI]0 6100 [c 0 0 , 1 ][w2 ]€ I +L[ 0 00, 2 ][Lw 2 1 2  LC 0 5 JWJ 5  0 ,

Iro [cmn I][w31
-2 2-mn [mn, [w3] 2

2 2 + 2; f

3Cmn,5][w 3]*5 + Ccmn,6]lw2]O6 ; 1

The vectors [c], ordered according to their dimensions (which, of

course, matches the dimension of the vectors [w]), are given by

0 2-2 2[ci 0,] = [-sinacos a, B tga, 0)

Lc" 00 2 ] - [B2g2 a, -B2 0os- 1 a, 0].-.

.* [c 00 4 ] = [B2 cos-1la, 0, 0] _.

*: [00 1 , 1 ] = [-B 2 cos-li, 0, B2 tga] ):
0 2 -

Ec0 ,]-lk/)8sn,0,0

c1 0 ,4] 10[ cos a, 0, 0, ]-'.

-? [c Is2 - tga, 0, -02Cos-1a]":.

-: [c00 , 2 ] = [ik, 0, O (169)a,-".i.

[ci0,6 I [(ik/2)sin a, 0, 0, ik)

lo86

: [Ec116 - (ikl2)cos a, 0, 0]1K

[00,6 - [(k2/4) -2sn a, 0, 0 ,

10,3] [ 2 o -a ,O ]..

[C10,2] - [-(ik/2)cos a, 0, ik, 0] -

- C011,2 ] -[(ik/2)sin a, 0, 0, ik]
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22 2LC I1 - [-(k /4)tga, (k /14), 0, 0)

[aJ C O, (k2/J4)(C-3/2), 0, 0]00,5

[C 2 1 E ( 2 /6)((l/2)tga-208 2 sina cosa), (k2 112)0- 2 sina
(k /4/a sina,0]

2c 2k /6(12 -2 2 2 2 0-2s[c ]- lik /6C(1/)- (Cos a-sin a),-Ck /2)8 inacosa, 0,
01,6 (k 2 /4)0 2si

2 2 2 2 2
[c1  ] [(lik /6)sin a C1+(1/2)tg a),-(k /6)cos a, -Ck /l2)sint,

- 2 2(19
Ck /4)tga, k /14, 0, 0](19

Ccont'd)

12 2 23o -2 2 O'O
E c ] = l( k / ) (c o - ( l 2 t 1) ( / ) ~ o ~ ) 0 010 C 2 'I(csa-0-2 Cos a), 0, 0, 0]

[Cc 2 [0,(k 2/6)((4/3)-C)cos a.(l/2)sinstga),10,5 2 2(k /6)CC5/12)-(C/2))sin a, 0, (k /4)CC-3/2), 0, 0]

2c11  EC 2  2 2
cc011 - k /12)sinatga, (k /6)sin a, -(k /12)cos a, 0, 0,

-(k 2114)tg a, ( /)

Ec0  ] I [-(k /12)(tga-3B- sinacosa,0, 0, 0, 0,
0122 2

-Ck /4)tg a, (k /14)]

2 2 2cc 01 5 I [0,Ck /6)CC-5/6)sin a, (k /6)(C5/12)-CC/2)cos a, 0, 0,
01,5 0, (k 2/4)C-3/2)]

The factors tga and cos a which occur in some of the coefficients

are indications that some of these formulae are not applicable for

a - wr/2. The results necessary for a - vr/2 have been obtained by

direct computation in Section V. They are brought into a form
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analogous to that for a 0 w/2. The functions 0 remains the same.

The function 02 does not appear. The vectors [wj] assume different

forms F.

- + + 2 2 2 2  3
.w] - [XX ,YX YXYY 1 (170)

Then

I0 (w,/2) - [B2011 +20
00 L1 3]w] l48

2 -2 2-10(w,/2 ) - [0,0 /2][wl],01 +L30 /2,0,0][w2 ]l3 + [38 /2,0][wi] 4

002,0[ 2
I(ir/2) -[28 0[w] + 2806

1

100(w/2) [0, -ik][Wl]¢l

(171)
I0(w/2) - [0, -1k, 0][w2 ] I ll O,-ik/2][Wl]*6
10 210

11(w/2) - [0,0, -ik/2]Cw 2)*1

2 2I00(w/2) - [0,-k 2 /4,0][w 2 ] 1 + [0,(k /4)(1-C)][w 2 ]*5
2 -2+ [0,(k /4)(1-0 ,-)][Wl]l 6

1 2(w/2) - L-k2 /6,0,(k 2 /12)(80- 2

+ (I/2))]Lw3 ] I + [7k 2/72,-C/6,0,0][W3]€5

+ [0,k2 (-(8-B2 /6)-(5/24),0][w2 ]* 6

2 2 2I01(w/2) = [0,-k /12,0)[w 3 ]¢ 1 + [0,0,k (-(C/12) + (5/18))][w3]l 5

+ [0,0,-(8 /12) - (112)][w2I

So far this amounts only to repetitions in a different form

of the formulae of Section V. To carry out the integration along

the side of the xy-elements for the case - ,/2 one must express
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the functions U,V,X, and Y, occurring in the vectors [wj], by p,

and q. Along the path of integration p is constant and q is the It

variable of integration.

Therefore, one writes for a A w/2

[w11] - MI[pq] +

[w2] = M2 [p
2 pqq 2 ]

[w3] = M3 [p
3 ,p2 q,q3]I

where M1 , and are respectively 3 by 2, 4 by 3 and 7 by 4

matrices. The rows of the matrices are the coefficients obtained

by expressing, one element of the column matrix on the left in

terms of p and q. (One has for instance in [w2  =

cos2 6p2 + 2cos6sin6pq + sin 2 6q2 ) and one will indeed find in M as
2 2

first row: cos 6, 2cos6sin6, sin 6. One obtains the following

expressions.

Cos 6 sin 6]

M cos Y sin Y (172)
, -sin Y Cos Y

i.Cos26 2sin6cos6 sin26"

-sin6cos6 cos2 6-sin 2 6 sin6cos6 (173)

M-

2 cos6cosY sin6cosY+cos6sinY sin6sinY

-sin6cosY cos6cosY-sin6sinY sin6cosY
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For a w I/2 one sets

ui - [Ml p,q]

- - 2 2.
w2 - [M2 ][p ,pq,q2]

--- 2 2w3 = CM3][p ,pqq

The rows of M19, M 2  and M3 are the coefficients of the development

of X, Y, X 2 , XY etc. in terms of p and q.

cos Y sin Y
_ 1 - ( 175 )

-sin Y cos Y (7

2 2
cos Y 2sinYcosY sin Y

2 2
M -sinYcosY cos -sin y sinYcosY
2

2 2
sin Y -2sinYcosY Cos Y N

(175)
(cont'd)

Cos y 3cos2 YsinY 3sinYcos2 Y sin Y

2 3 2 3 2 2
-sinYcos y cos Y-2sin YcosY -sin Y+2sinYcos Y sin YcosY

sin 2YcosY sin 3Y-2sinYcos2 y cos 3Y-2sin 2YcosY sinYcos2 y

-sin 3y 3sin 2YcosY -3sinYcos2y cos3y.
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Now consider some term of one function 'i Take forsmn"

instance a term containing the column matrix [w 2 ). Then one has

S L]Lw* ([EM]([2 2 +c j2j Ile IN 2 ]II(p pqq ] 0 }
2 2.

The expression within the first brace on the right is a row vector

which depends solely on a and Y. The integration along a side of

the xy-element operates only on the elements of the vector

[p 2 *j,pq~j~q
2 *j]*- 2 0 0 L

0 0 q 42¢

Applying Eq. (129) and observing that xdy-ydx = pdq one obtains as
-. -i

a contribution to In

p3  0 0 jdq

(i+m+n) -I  p 2 q 4 jdq (176)

0 0 p [ q2 *0dq

For I log(k(R-X) one has to apply Eq. (130); the function g(xy)
2

is given by 1, q, and q . One obtains

[3 o o .dq Jdq1. 0 0 1 f(i~m+n)-1 0 p2 0 fqoidq -(i+m+n) - I  fqdq (177)

0 I J q2*dq Jq2dq
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We denote by *Z) the vector [*jdq, q~jdq, q2 dq...
truncated after the Ith term.

The contribution to the integral over the xy-element of one

endpoint of one side of the xy-element with angle Y is denoted by

J''(a.Y), with the same indices as the functions I" from which it

originates. Ultimately, J'" depends on X - xj- i and Y = yj-rii

(besides a and Y). Then one has

Smnj(a,Y) (Z+m+n+2) .([c mn1j][w] . 12 [j],J*2 (178)

j is then the sum of all pertinent expressions J n"(Seeu~n m, nj*Eqs. (168) and (171).) The dimensions of the row matrix [w], the

diagonal matrix containing the powers of p and of the vector [*j]

have not been shown. The subscript of w is found in Eq. (168).

The number of rows in w gives the dimension of the following square
matrix and of the vector [*]. For j = 1 one has

m+n+t

mn,1 = [ L+m+n+2] -1[cLn ][WmIp m+n+L-1 ] l m+ n + L]

-1 m+n+L
- (L+m+n+2) 1* n ] (179)

As preparation for the evaluation of the vectors [*], we first

list some recurring auxiliary expressions. In the computation
they, and also the vector [*], can be evaluated immediately as

definite integrals between two limits for q.
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R cAq -log (k(R-q))-(/)p

R q dq - 21 log 1(k(R-q))

JR_ 'q3dq - R[(1/3)q2 _-2/) 2

(180)

R_ q 4dq - R[(1/'4)q 3 -(38pq (/)P1 (kR )

1 2fRdq '~(Rq -p log(k(R-V))

JRqdq 1/3 R3

Rq 2dq -R[(1/14)q3 ( 1/8)p 2q] 1/8 p 4log(k(R-V))

- ± o(Y/(R+X)) + logCR-X)/Y)

The last relation follows from Eq. (E.2).

The general formula for q q%1 dq is Eq. (E.3). Here we

* specialize

J *dq - I(q -ptgY)log~k(R-X)) -pcos Y JR1 dq - j

4 J*qdq 1 I~ (q2 -(tY )log(k(R-X)) - os Y j R1l(q+(ptg*Y))dq

-(q 2/2) - (ptgY)qI

Jl *qdq -(1/3)1(q 3  (ptgy) log(Ic(R-X))

3 2 2
- (q3/3) -(ptgY)(q 2/2) - (ptgY) 21

*~ ~ ~ *( d (1/14)1(q -(PtgY)Ylog(k(R-X)) 2 +(tY
3 d

- Pecs 1Y f R .(q3 + (ptgY)q +(t')q+(tY d

- (q4 /14) -ptgY(q /3) - (ptgY)2 (q2 /2) - (ptgY) qI

914



From the factor of log (k(R-X)). that is from q n-(ptgY) n one can

split off a factor (q-ptgY) - YCOS1 Y. Furthermore from Eqs. (E.14)

J.dq - (q - (-pcot6)log((R-V)/U) + pain 6 f R-dq)
24

r 1/)(q 2 _ _ct2
*2qdq (-pcot) )log((R-V)/U)

+pain 1 6 R- (q + (-pcot6)dql (182)

q dq- (1/3)1(q3 - (-pcot6) )log((R-V)/U)

+pain' 6 f R (q2 + C-pcot6)q + (-pcot6) dqj

3 4 14
#J2 d (1/4)1(q -(-pcot6) )log(R-V)/U)

+psin .6 fR1 (q3  (-pcota)q2 + (-pcota) q

+(-pcot6)3)dql

From q n (-pcot6)n a factor q *pcos6 -Usin- 6 can be split off. -

43 *dq -cos- Ylog(kY)

3J *qdq -COS Y[q+(ptgY)log(kY)l (183)

J 2 -1 2 2
#qdq =cos Y[(q /2).(ptgY)q+(ptgY) log~kY))

3 -1 2 2 3q *3 dq -cos .Y[(q/3)+(ptgY)(q /2)+(ptgY) q.(ptgY) log(k(Y)))

J*dq f RY- 1dq p 2 os 2 y -1 Y-1dq~cos- 1Y[J -% dq4(ptgY)f g

J*qdq -p
3tgycos 2 f R-1 Y-1 dq~cos 1 Y J(R'1q 2+(PtgY)R 1l q)dq

+ p2 Cos y f R dq

qf jq -j~ q (n 0, 1, 2, 3)

f *6~ Jq q' Rdq. n -0, 1, 2
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One obviously needs special formulae in those integrals where

Cos a and tga or sin .6 and cos 6 occur, if respectively a+u/2 or

6+0. They are found by direct integration. For Y - w/2 one has

q - X, p - -Y. Then

q j q1 - log(k(R-X))dx [xn+l log(k(R-X)) + jn+1 R dX]

The integrals are immediately found from Eqs. (180) by replacing q

by X, and p by -y. Therefore, for Y - w/2

1 *ldq - X log(k(R-X) + R

jlqdq - 1/2{[log(k(R-X)) + 1 (RX + Y21og(k(R-X)))

Jlq 2dq - (1/3)([X 3log(k(R-X)) + (1/3)R(X2-2y2 ) (184)

J1 qdq " 1/4jX log(k(R-X)).R(1/4)X3-(3/8)XY )-(3/8)Y log(k(R-X )) }

I3 n d  X-1 I nx 1- nl) n+1
3 q dq Y J X dx Y (n.l) , n - O, 1, 2, 3.

# *4 qndy " Y fXnRdx

-1 2# *4 dy - Y [(RX-Y log(k(R-X))]

4 *4 qdy - Y (1/3)R

The limit 6 - 0 requires a revision of the integrals involving *2"

Then p - U, q - V, and one obtains

n nS lg(H-V/IUl)dq - JV log((R-V)/U)dv

S(n+lj) -[vn+ log(R-V)/U) + Vn+IR-l1 dV

# *2dq - {Vlog(H-V/U) + R (185)

22

J q#2dq ( (1/2)(V 2log((R-V)/U) + 1/2((RV + U2 log((R-V)/Y)}
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f 2 32 U2J q - (1/3)IV log(R-V)/U) + i((1/3)V -(2/3)U) (185)
~~(cont'd) w

q dq.2~ - (1/4)(V 109((R-V)/U) + R((1/14)V 3  p.

2 14
-3/8V U-(3/8)U lg((R-V)/U)l
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SECTION VII

SINGULARITIES OF THE UPWASH FIELD

In carrying out the integrations over X and Y one must be

aware of the singularities in the upwash field and how different

terms contribute to them. Consider a single En-element.

Singularities will probably occur at its boundaries and at the
boundaries of the wake and at the wake of points of the contour of

the &n-element for which the contour is discontinuous. (see "

Figs. 3). The wake has already been studied in Section III, but
one must ask how these wake singularities express themselves by the

formulae found in Section V.

Because of the denominator Y the strongest singularities are

caused by the functions 03 and *4" Assume first that Ap is

constant throughout the element, then only I0 will contain 03 and

S4" One has as the only contribution

0 21 2 -1 2 2 1/2Io00o(w/2) - B2Y (X+R) (Y-I [(x-&i)+((x-&i) +(Y- 2) I

For the triangular element, shown in Fig. 3, this must be

evaluated for the side 2,3. To recognize the analytic behavior, we
rewrite this expression. One has for x < &3 < C2

Y (X+R) - Y/(R-X) - Y/2R

Here the flow field does not have a singularity. One has for

x > &2 > &3

Y(xR) - (2X + Y(R-X)) 2XY - for Y small

This displays the singularity caused by one of the limits

We know from Section III, that except for a factor exp(ikx),
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a: W.7 ..

the singularity is independent of x. This is seen if one

substitutes the limits (& and E3)' i.e. replaces X by x-E2 and

X-_3 One then obtains

-1[X- - E 3 2Y1 (E-

The situation is more complicated if Ap is linear in E and A..
The contribution of *3 and 44then appear

O 2 -1*in 1 00 (wr/2), namely, 0 Y .(X+R)

O 2 -1(+Rin I1 (ir/2), namely, (B/2)XY (X)

an in nml, 21 -2 2 -1
an 10n (wt), nml, Y (Cos atu + Cos GUR)

*The last term is rewritten for the vicinity of Y - 0. There

U -X coso. Therefore, except for terms of higher order in Y

a Y (Cos QU2 + Cos aUR) BY 1 X(X+R)

*As before, no singularities will be encountered for x < 2 < 3
*In the following discussion for x > ~2> we retain only the

singular parts.E2>3

2- 2 1
B Y (X+R). 20Y X

2 -1 2-i 28 12Y X(X+R)4 8 Y .X

0 Y (Cos QU2  cos acUR)+ 20 Y X

Now choose a function Ap(E,ri), whose integral, taken for

n ~2 - n 3 from E2 to E#is zero. Such a function should not
* generate a wake singularity:

*Ap(E,n) - 12
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YJFW MIl* . 7.7,17'.

In order to evaluate the upwash, one must first evaluate

I/2)

Ap(x,y) Ap(xln2) Cl0(X-(2+3)

Then one forms

0 0A 
0(Xy)I C I

The integrals must be formed around the entire vn-element. Only

the limits due to the points 2 and 3 will contribute to the

singularity. Point 2 is the upper limit for the integration along
the side 1,2 and the lower limit for the side 2,3. Point 3 is the
upper limit for the integration along 2,3 and the lower limit for

the integration along 3,1. One obtains the following contributions

0 2 1from 100 (7r/2) y c 102[x-( E 3 )/2)]((x-3)_(x -2 ))

from I iri2) (  (Y c-(x- 22:"

0 2-1 2
0 0 (c 1 ) lc1 0 2(x-& 2 )frmI0 2 - 1 2

from I10(a31) -B2 y 1 C1 0 2(x- 210311 &3

The sum of these expressions cancels, indeed.

In the analytic integration over x and y, *3 and *4 give
separate formulae. The Y singulaity (which appears in the

individual expression) becomes a log Y singularity after the
integration. If Y - 0 is one of the limits of integration, then
one obtains infinity. It is true that these infinities will always
cancel. This happens for points upstream of the n-element because
no singularities are present, for wake points if &p is continuous
because of the contribution of an adjacent &n-element; for wake
points if Ap is discontinuous because the region of integration
will then extend across the wake and the Y singularity changes

100 I O0 I
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sign as one crosses the wake. In any case the formulae are needed

for the numerical procedure which show the singularity separately.

They will be derived later.
For elements where a A 1T/2 for all sides, no Y

singularities will appear. As mentioned above, this is of interest

if one works with elements in which Ap is constant for then one can

choose the individual elements as pressure and upwash areas.

Weaker singularities occur in 01 and In 01 = log(k(R-X))

the argument of logarithm becomes zero for Y = 0 and X > 0. To

display the singularity one writes

2 -12
1 log(k(R-X) = logkY (R+X) = log(kY 2 ) - log(R+X)

In some of the expressions €I is multiplied by powers of Y, which

makes the singularity less pronounced. Upon integration with

respect to x and y one obtains finite quantities. One does not

depend upon cancellation of different terms, but one must make

sure, that the formulae for the integrals do not, inadvertantly,

give the difference beween two infinite quantities.

For I?. (n/2), the expression 01 does not introduce

singularities except at the boundary of the n element. This is

obvious for points Y - 0 if x < E3 < E3" For x > 2 > 3 one

obtains after substitution of the limits

[ynlog(kY 2 ) Ynlog(2(x- 3 ))] Lynlog(kY 2  log(2(x-.

The logarithmic terms cancel.

However, the same argument cannot be made for 3 x < E 2 "

The expression due to does not generate a singularity, the

singularity of the expression due to 3 remains uncompensated.
3

2.2
In (1T/2), the function 01 is multiplied by X, X etc.

Then the singularity will not cancel for x > C > C one has a

logarithmic contribution to the wake singularity. This is to be
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expected if one examines the portion K of the kernel K; I.. arises

from the lowest order term in k that contains the logarithm.

In the expressions for a A N/2, the function is

encountered in the following forms

0 2
in Io0 (a) 82tgt 1

02 2 -U2
in 110 (a) -82sinccos '

02 2and in 101 (1) -8 cos aU01

Only an integration limit for which Y - 0 will contribute to the

singular part. In general, there is no second compensatory term.

These are the terms responsible for the wake singularities for

elements sketched in Fig. 3b.

The terms ¢2 = log((R-V)/U) occur in integrations along lines

U = const. They occur multiplied by different powers of U. Terms

U n log U can be considered as constants of integration which cancel

(even for n - 0 and in the limit U-0). Therefore, it suffices if
n

we discuss expression U log (R-V). One best returns to the

" original coordinates u = -U, v = -V. For a point to the line

U = 0, one must evaluate (-U)n [log(R 2 +v2 )-log(R1 +Vl)]. If the

* point (x,y) lies close to the line u = const and v > v2 > v I , then

2

2.

log u is canceled by the contribution of point 2. For v1< v < v2,

this cancellation does not occur. The terms ¢2 express

singularities in the upwash along element sides for which a Tr/2.

According to these considerations one must examine how the

formulae for the integrals derived from (combined into a vector

appear in the limit Y+O, and how the formLulae for 2 appear in

the limit U = 0. One should always obtain finite expressions.

* Next, consider I in the case a A 7/2, 6 / n/2. rhe origin

* lies at a point T.ni; one integrate3 along a line p1 const from qj
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to qj+1 " Singularities in the vector J arise if one of the

endpoints of the interval of integration lies at Y = 0. The

components of the vector *1 are the integrals shown in Eq. (181).

The term which becomes singular for Y = 0 is log(k(R-X), it behaves

as log Y). The factor qn _ (ptgY)n of this term vanishes as

(Ycos Y). The term is simply disregarded if Y - 0 at one of the

limits. For Y - /12, one has p - -Y. The expressions i1 are then

found in Eqs. (184). They do not vanish. But the element of the

diagonal matrix with powers of p - -Y now vanish. Again one simply

disregards this limit.

Similar considerations apply to ¢2 (and therefore *2). For

6 0 0 the singular element log (R-V)/U in Eqs. (182) vanishes if V

- 0 at one of the limits. For 6 0, p = u, and the diagonal

matrix with elements given by powers of p vanishes.

Now we identify the singularities due to *3 - Y and

4 RY which appear after the integration 
with respect to x and

y has been carried out.

We begin with cases a 1t/ 2 .

2 2Then one has 82X4 and BR04 as contributions to I00( /2);

and (382 /2)X 2* 3 and (38/2)XR€4 as contributions to I00(n/2).
3 10

Discussion for

Case Y = 12.

One remembers that the areas of integration over x and y are

triangles. Therefore one forms

-*1.

-ff X3 dxdy -f dxdy

j+1 
j+1

= -g f Xdx - -(1/4)X 2
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The negative sign arises because the convention that one integrates

around the xy-element in the counterclockwise sense. If the
integration extends from point j to point j+1 in Fig. 14 then the

element lies above the line j, j+1 and the contribution of the

triangle must be subtracted. In the notation of Eq. (178) one then

has

0 i2 -
(w/2, w/2) A00,3

Similarly

0 2 ""

I (w/2, w/2) = /6)X3
10,3 /)

In spite of the fact that the area of the triangle tends to zero,

the integral over the triangle is finite. The same behavior will

be found for J 4 (r/2,/2).

For *3 and Y A 1/2 one has

J 0  (7r/2,Y) - 2 (p/2) J XY-1 dqo00,3 f

2 -1
- 8(p/2)J(qsin6 + pcos6)(qcos6 - psin6)- dq

Hence,

0  2 2 -2
0,3 (/2,Y) /2)[tgYpq + p cos Ylog(klYl)]

If one of the limits of integration should be Y - 0, then the last
2 -2term gives a logarithmic singularity. For y - 0, one has p cos Y

2- X + O(y). Thus one can write

o0,3 (/2,Y) ( 2/2)[tgYpq + (X2  O(Y)log(kIYj))
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This displays the singularity in terms of X and Y. Of course, in

all applications these infinities must ultimately cancel. The only

purpose to retain them in the computations as separate terms is to

provide a check.

0
For the contribution of ¢3 to J 1 0(,/2,Y) one must evaluate

0  7(/2,Y) (382 /2)(p/3)J X2Y-dq

= (3B2 /2)(P/3)J 03 (sin
2 Yq2 + 2sinYcosYpq + cos 2 Yp2 )dq

The individual integrals are found in Eq. (183). Singularities

arise because of the factor log (kY) if one of the limits is Y - 0.

Collecting the terms contributing to the singularity one obtains

(32/2)(p3/3)cos- 1'[sin 2Ytg2 Y + 2sinYcosYtgY + cos2 Y)log(ky)

2 3 42 2 3
- (36 /2)(p /3)cosY(tg Y + 2tg Y+1) - (36 /2)(1/3)(p/cosy) log(kY)

Thus, substituting the remaining terms of Eqs. (183)

0 (12Y) = (-/-Y10,3

(a2 /2){(sinYtg(Y/2)pq2 p 2qsinY(2 + tg2 Y) + (X3 + O(Y))log(k/Y)}

- This terminates the evaluation of I for a = w/2. (The results

can be summarized by stating that it suffices that one disregards

the singular terms, provided of course, that one uses analytical

expressions in which they cancel on theoretical grounds.)

Now we discuss the corresponding terms for for a =/2

10 J ( 7r/2,ir/2) -a 2/2) j Rdx = -(a2 /4)[RX-y2 log(k(R-X)]

For Y + 0, X > 0, we write logk(R-X) - logkY 2 -log(R+X). For Y = 0,

the expression remains finite (although the area of the triangle is

zero) one obtains for Y = 7r/2
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0 2' r.. F.

0 2 3
*5 J00~~i (w/2,rf/2) - ( /64)R frY-0

(i/ 1r2 0 (82) 6)

00,4 f0

This is one of the exprqssion Eq. (183). The individual terms on

the right of Eq. (183) are found in Eq. (180). After substitution

one obtains

Jg0 i(r/2, Y)

2 2 -2 -1 2
(a (/2)fp cos Ylog((R-X)/Y) +Cos Y[PR -p tgYlogk(R-q)]}

- 28/2)[((X 2+0(Y))(log(R-X)-logkY)+cos- 1pR-p 2tgYlog(k(R-q)])

2 2 -1 2
(B2 /2)[(X +0(Y))(log(kY)-log(kCR+X),+cos Y[pR-p tgYlog(k(R-q)]}

The first version is the general formula, the second version

dislays the singularity for X < 0, and the third version the

singularity of X > 0. The last term is singular for p - 0, but
2

then it vanishes because of the factor p .Next we evaluate

Next we evaluate

J 0 14 (i/2,Y) OB 3 2 /2)(P/3) J ~dq
=(2/2)[cosYp

2 j *q sinYp J q04dq]
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Here expressions from Eq. (183) are substituted:

J10,4( / , )

2~~ ~ /2H o-3YfR Y- dy +ptgY J- Rqdq + p 2Cos- Y R 1qdq

+ p3 tgy(1 + Cos-2y)f R- dq}

Only the first term within the braces has a denominator Y, which

will give a singularity for Y 0 0. Substituting expressions from

Eq. (180) one obtains

2 3-3 2J 10,4 ( 2 ,B ) = 2/2{p cos-ylog(R-X)/Y) + (ptgY/2)(Rq+p log(k(R-q))

+ p2Cos- 2 )R - p3 tgY(1 + cos-2 Y)log(kR-q))j

The singularity for Y - 0 is displayed by writing

p3cos -2 Y X + O(Y)

Then
3 -- -

p 3cos-3Ylog(R-X/Y) - (X3 + O(Y)(log(k(R-X) - log(kY))

= (X3 + O(Y)(-log(k(R+X) + log(k/Y)

The first form is suitable if X < 0, the second if X > 0.
0

For a A w/2 one finds terms with-*3 and-04 in 1 0 ., namely n
2 -2 2 2 -2 -1 2 -1 2 -1 -1
BCos aU *3 - aCos aU Y and 0cos aU04 cos aURY

For Y 1 i/2, one has

6- Y-a - (w/2 - a)
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and

p - -Y, q = X

-' Then

U -Y sina + X cosx

2 22 2
U2 = y2 sin 2 a - 2XY sina cosa + X cos a

Hence
0d

o 2 -2 ~ 21%
JI0,(a1/2) = B2Cos a(p/3) I U 2 3dq

" (B2 /3)cos -2 a[-sin 2 ay2 f dx + 2sinacosaYf Xdx- cos 2 aj X2dx

Jo 3 (a,w/2) = (B2 /3)[-tg2 ay2 X tgaYX2  (Cos a/3)X 3 ]

Here no singularity for Y - 0 occurs; the expression does not

vanish, even though the area of the triangle from which it arises

is zero.

Next we discuss

o 2 -
2(aw2) (6 /3)p cos dq

2 -1
1( /3)cos a[Ysina fRdX-cosa JRXdx]

0 21 3|',.

,JO,(a,r12) - (0 /3)(((tga)/2)YERX- Ylog(k(R-X)- .3.R..

The singularity which is present for X > 0, is of the character Y3

log Y. For Y - 0 one obtains

1 10, (a,ir12) =-(a 219)R 3  ?
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For Y A w/2 one has

0 2 -2 2
J (ay) = 8 (p/3)cos aU 2 

3dq

2 (/)o-2 2

. 2 (/3)cos 2 a{Cos 26 P 2 dq + 2sin6cos6 p *3qdq
f 3 f J 3

+ sin 2 6 q &3 2 dq )

f 03

Here expressions from Eq. (183) are substituted. We collect terms

of the same character; the terms logk(Y) is of particular interest

0 (a,Y) IJ10,3

2 -2 -1 2 2 2 2
(0 /3)cos -2cos YI[(2sin6cos6 + sin 6tg6)p q + ((sin 6)/2)pq

p3  2 2 2
+ p(Cos 6 + 2sin6cos6tgY + sin 6tg Y)log(kY)}

The factor of log kY simplifies to

p3 cos2 6(1 + 2tg6tgY + tg6 2 tg2 -) cos2 6( + tg6tgY)2

- Cos 2 Yos(Y6)2

But

Y- 6-c

Thus one finds

1- (0/3)(cos acos Y+sin6cos6(2 tg6tg6)p 2 qJi0,3 ,, , = 8 / )c s 2 3I

+ (1/2)sin2 6pq 2] + 3cos 3ylog(kY)}

3 -3 3 -
One has p cos Y X + 0(Y).

This shows the character of the singular term; for Y * 0 it behaves

as (82 /3)X3log(kY).
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Consider finally

J1o,4(a,=) $2 Cos-1 ca(p/3) J "J4dq

- 2 Cos-1 (p/3)[cos6 p f 4 q + sin6 f qa4dq]

Here the expressions from Eq. (183) are substituted. One then

obtains
[ 0 82 1 4y-d._

JIOM4(XY) ( (  /3)cos- Q(p Cos 3 Y(cos(6-Y) R - ydq

+ p Cos-Ycos(6-) qR dq

3 -3 -+ p cos Ycos6(sinYcosY + 1) f R -dq

+ cos-1 Y sin6 p f R 1 q2 dqj

Here expressions from Eq. (180) and 6-Y a a are substituted

10 (ay) - ( 2/3)(p 3oos-3 Ylog(R-X)/Y)]
2 -2 3 1 -cos YR-p3os- Lcos Ycos6(sinYcosy+1)log(k(R-q))

+ (1/2)cos -cos Ysin 6 [ Rpq + p log(k(R-q))]}

3. 3

Here again p3 cos 3 Y = + O(Y), so that the singular term due to

log(R-X/Y) is readily recognized.
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SECTION VIII

CONCLUDING SURVEY

The sheer volume of details and formulae may make it

difficult to extract from this report the information needed for

numerical work. We describe here the main concepts, the

definitions and list the important equations.

One observes that the formulae become longer (although not

really more complex) as one takes higher terms in the development

with respect to the reduced frequency into account. But this

applies only if the xy-element coincides with, or lies in, the

vicinity of the &n-element. For elements at a distance the

different terms of the development with respect to frequency are

lumped together, one obtains rather smooth functions, the

integrations are carried out numerically and this difficulty does

not arise. Ir any case one must choose a subdivision of the wing

into elements so that the linear elemental pressure distribution

give a sufficient accuracy. This implies that for an xy-element in

the neighborhood of an n-element the terms of low order in the

development with respect to the reduced frequency will suffice.

Most likely the powers zero and one will be enough. (For elements

at a greater distance one should go further in the development.

But we mentioned already that then the integrations can be carried

out without difficulty.)

The overall arrangement of the computation is symbolized by

Eq. (7). The definitions of the "housekeeping" matricecs M and

M ( 3 ) are given in the paragraph preceding Eq. (7). An element of L71
(2)

the matrix M gives the average upwash in some xy-element due lo

one elemental pressure distribution. (In each triangular .n-

element there are three elemental pressure distributions.)

The elemental pressure distributions are expressed in ter,ns %

of coordinates F and 9; the coordinates within an upwash element

are x and y. The pressure difference between the upper and lowe:"

111 7".

......................-. ....°-..-. . %. .** ' " " %. •-. , °.-° • - .' * ".° ".-.-... .-. .". .-... .... , .'.... °'°' .% '. '



side of the wing is denoted by Ap( ,n), to make analytical

integrations possible one must consider Ap(E,n) - Ap(C,n)exp(ik0)

as unknown functions (Eq. (6)).

To each triangular element there belong three elemental shape

functions, shown in Eq. (11). They are linear functions which

assume the value one at the corner of the triangle with subscript j

and zero at the other corners.

For an xy-element at a sufficient distance from the n-

element one substitutes the expressions Eq. (11) into Eq. (10) and

carries out the integrations numerically. To make analytical

integrations feasible Eq. (10) contains a weight factor exp(ikx).

For xy-elements at a distance from the Cn-element but within

its wake or close to it, one applies the procedure given by

Eqs. (20) through (31) (if one restricts oneself to the powers zero

and one of the reduced frequency and by Eqs. (20) through (42) for .JS.

the general case). In the equations (without number) starting

after Eq. (42) and proceeding to the end of the section the

procedure is specialized to triangular elements and carried out

analytically. One stops with the evaluation of f4 if the powers of

the reduced frequency are only zero and one.

Before the integrals of the upwash over an xy-element close

to a Cn-element are evaluated, we have derived formulae for the

upwash at a given fixed point x,y. These results are of an

intermediate nature. There is no need to evaluate these formulae

unlesj one wants to show the details of the upwash distribution due

to one elemental pressure distribution. We describe these results

because they form an important part of the overall procedure. The

pressure difference Ap are written in the form Eq. (51). The

functions c (x,y) are expressed in terms of the elemcntal presF.uremn
distribution given by Eq. (11). (In practice only the combir taion.-

(0,0), (1,0), and (0,1) for (m,n) are used.)

If one chooses to work only with (m,n) - (0,0), then one ,. '

elements with constant Ap, and if it is not !possiblr to maintain

continuity as one moves from one element to its neighbor. Ther if
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the &n-element has a side parallel to the & axis, one has at the 1??

wake line originating at this side (n-y) singularity in the

upwash. To obtain finite averages for the upwash, the upwash areas

(over which the averages are formed) must overlap these wake lines.

If none of the sides of the &n-element is parallel to the & axis,

then the singularities are of the character log(n-y) and the

average remains finite without an overlap. One can then develop a

method in which the pressure and upwash areas coincide with the

pressure elements.

The general procedure obtained after a limiting process z+O

has been carried out, is summarized in the remarks following

Eq. (88a). The case m - 0, n - 0 is exceptional, the procedure is

given by Eq. (88). To obtain the upwash at a fixed point xy, one

has to carry out integrations around the contour of the &n-element,

separately for each individual term in the representation for the

pressure.

Carrying out the procedure one obtains definite integral over

the sides of the triangle, denoted by i + The subscripts
m,n

(here m and n) refer to the term in the development of Ap, the

superscripts on the left (here i and i+1) refer to the numbering of

the corners of the &n-element. The indefinite integral is denoted

by I L The slope of the side enters by Eq. (107)

, '. n°

tgc ~ i+1 = i 9/n+ 1  n")

The indefinite integral depends upon

X x-&

Y Y-n" "

and
ati ,i ' _
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Furthermore, we have used

R (X 2 + y21/2

U - X cosa - Y sina

V - X sina - Y cosa

(see Eq. (140)).

The indefinite integrals are denoted by I") (X,Y,a). Here them,n
limits of and n for the individual sides of the triangle must be

substituted. One obtains a number of functions, that depend upon U
x-i, ri-y i, and a i+1" The expression I are divided because
of the different analytical characters of the expressions, for

instance

0 01 02

00 00100

The results are found in Eqs. (114) through (120) for a w/2, and
Eqs. (141), (147) through (155).

Formulae for the integration with respect to x and y are

derived in Section VI. The integrals appear now a,3 contour

integrals around the xy-element. A summary of the results before

this integration is found in Eqs. (167), (168), and (169), they are
a repetition in a more condensed form of the equations listed

above, except for the introduction of I and i01, defined by
1 0,.-

Eq. (157).

In the integration the slope of the si(o.9 of the xy-element

appears given by Eq. (161)

x -x
tga 1 i i+1

iYi+ y1  +

i'.l
11 4-- ,
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The angle a defined for the sides of the En-element appears again.

We have furthermore (Eq. (164a))

Regarding this last phase of the computation we refer to the

description given in Section VI.

In evaluating these expressions one will find infinities.

These and other singularities are discussed in Section VII.

Critical, of course, are the lines of the wake that start at the

corners of the En-elements, but also, although the singularities

are less pronounced, the sides of the v-triangle and their

straight extensions through the Eq-plane. For methods in which the

effect of such infinities cancel on theoretical grounds, they can

simply be disregarded, when they appear during the computations.

4, 115



REFERENCES

1. Ueda, T., "Asymptotic Expansion of the Kernel Function in
Subsonic Unsteady Lifting Surface Theory," Journal of Japan
Society of Aero/Space Sciences, Vol. 29, No.326, pp. 16--174,
1981 .

2. Ueda, T. and Dowell, E. H., "A New Solution for Lifting Surfaces
in Subsonic Flow," AIAA Journal, Vol. 20, No. 3, pp. 348-355,
1982.

3. Mangler, K. W.,"Improper Integrals in Theoretical Aerodynamics,"
RAE Report Aero 2424, 1951.

4. Abramowitz, Miltow and Stegun, Irene, A. (Editors),"Handbook
of Mathematical Functions,"National Bureau of Standards Applied
Mathematics Series, 55, 1964. (Formulae 9.1.10, 9.1.11, and
6.3.2.)

116



*~~j .... .

I

APPENDIX A

THE BASIC EQUATION

The classical equation for oscillatory flows is rederived

here as a convenience to the nonspecialist who would like to ,.

know how the equation comes about, but does not want to go back

to the original literature.

The formulation uses the accleration potential. Usually,

and also in the present case, the acceleration potential is used

in connection with the linearized flow equations. But according

to an observation (which was made to the author by Ernst Hoelder)

it has also a meaning in a nonlinearized isentropic flow; it is

given by the negative enthalpy of the particle.

The following derivation is made for the linearized flow

equation. Denoting by p, p, and , respectively, the deviation

of the pressure from the free stream pressure, the free stream

density, and the acceleration potential, one has

p = -p, (A.1)

In a linearized flew with free stream velocity U, and velocity

components U + u, v, and w in the x, y, and z directions*,

respectively, of a Cartesian system of coordinates, one has the

components of the acceleration

(au/at) + U(3u/3x),

(v/at) + U(3v/ax),

and

(aw/at) + U(aw/ax).

Expressed in terms of a velocity potential, 0, the velocity

components are

for simplicity we use in this Appendix x, y, z, etc., before a

Prandtl-Glauert coordinate transformation has been carried out
although in the main body of the report the notation x, y, z is used.
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u = a/xv = /a and w =oa

Theref'orel

6t a

The velocity potential is then expressed in terms of' an acceleration

potential *p(x,y,z,t)

x

*(x,y,z,t) U= f' *p(E,y,z,t + i-xd

(The velocity potential will be used in an intermediate step to

evaluate the upwash due to a given acceleration potential.) One

has indeed

U(W/ax) = *(x,y,z,t) - IP ( Y' + I.-

- i(x'y'z't) -0a

Choosing

O(X,y,z,t) = (x,y,z)exp(ivt)

i(x,y,z,t) = (x,y,z)exp(ivt)

One obtains

i(x'y'z) =U
1 f (y,z)exp(ivJ-)dE

*and are made dimensionless with UL and U 2 respectively, where

* L is some characteristic length.

*UL

- 2-

Furthermore

kU
x=x/L, yIyL, z/L, and v = r--

11L



Then one has

U~ip~~y~z)(A . 1  6

*(RL,yL,iL) U UL (Ri5 z)

and one obtains

T(X,y.Z) = ir,,exik-)d (A.3)

One has, from Eq. (A.1)

p =-pU 2-

Setting

p-=Ap/(PU2/12) (A.4)

one obtains

=-2Ti (A.5)

* From now on the bars will be omitted.

0 and 11'satisfy the same linearized differential equation.

Originally,

2 2
(l -+U -+ = 0 (A.6)

a a

*(where a Is the free stream velocity of sound and M =U/a is the

Mach number). Introducing nondimensional quantities one obtains

*for the oscillatory case (after omission of the bars)

(1 -P4
2)d2 + ip + -21k P2 ~+kMi A7xx yy z

119



Let
I.

2 2

r2  y2 + z (A.8)

R2 = x2 + 82r2

A solution of Eq. (A.7) for outgoing waves which has an

singularity at the origin is given by

source - - ~R exp[ -k - (Mx - R)] (A.9)

Eq. (A.9) can be verified by substitution into Eq. (A.7). If

the expression would be used for the potential it would represent

an oscillating source. The expression for 4 to be used here is

given by

source

One has

L+ Mk) exp[ikM(Mx -)] (A.10)

The potential pertaining to it is obtained from Eq. (A.3)

* or using the first of Eqs. (A.8)

4'(x,y,z) =-z exp(-ikx) ( ~+ 2 21/

Pik 2 2(2 A.-

exp[, - (E + r) 1 ]d,
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To simplify the argument of the exponential function, one introduces

v= a -2 1C - WE 2 + a 2 r2)12 (A.12)

and (for the upper limit of the integral)

V(x,r) 2 [x - M(x2 + 2 r 2)112] (A.13)

(In Ref. 1, X is used instead of V. The author has changed the
notation because the variable V does not solely depend upon x.)

Then, from Eq. (A.12) I

= v M~ 2 +2 1/2

and from Eq. (A.13)

2 21/2 2v +r) + Mv

d~dv 2 2 1/2

(r + v)

R(t,r) ~2 + 2 r 2 1/2 (V ( 2 + r 2)112 + Mv (A.15)

analogously

R(x,r) =(x
2 + 0r 2 112 -(V 

2  r r2)112  MV (A.15a)

* Then by substitution into Eq. (A.1l)

* *x'y'z) =

-z exp(-Ikx) ex~ky) 2

L0[1(v +r 2) 1  + Mv] (r2 +V 2

ikM d2 2 1/2 2 2l7/2]
1(v +r 2 ) 1  + Mv](r2 + dv
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In the second term of the bracket in the integrand an integration

by parts is carried out: v
¢(x,y,z) = -z exp(-ikx) 2 2 2kv) 2r2 .12(v + r + Mv](v + r)

Sexp(ikv)dv[(v 2 + r2 )1 / 2 + Mv]2 (v2 + r2) I / 2

d M
dv [(v2 + r2 )1/2 2 + r2 )1/2

[( r + r

The contribution of the lower limit in the term outside of the

integral vanishes. With Eq. (A.15) one obtains for the upper

limit

'..

M exp(ikV)

R(xr)(V2 + r2 )I/2

The integral simplifies to

V 
ESexp (ikv) d. -v

(v2  + r2) / v:-.....

Thus, one finally finds for the velocity potential that pertains

to the acceleration potential given by Eq. (A.10)

V "
M 2 l'2ik + exp(ikv) dvO(x,yz) = -z exp(-ikx) M exp(ikV) ex2 ir ) 2R~xr)( 2  2 r212 2 r2 3/2 d..--,~)( (v2 + r ..:

(A.16) 7

Where V is defined in Eq. (A.13), r and R in Eq. (A.8). The upwash

is then given by 34/3z. Eq. (A.10) is a fundamental sclution with

the singular point at the origin. The flow field is represented M

by a superposition of such fundamental solutions but with singular

points (E,q) lying in the plane of the wing. One then must replace

x, by x-&, and y by y-n. Consequently, one has now
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2 2 z2

r = (y-n) + z]

R = [(x-) 2 + 82r 2 1/2 (A.17)

V = 82[(x- ) - MR]

We note that

(V2 + r )2  = 8-2 (R - M(x-E)) (A.18)

Let f(C,n) be the strength of the doublets assigned to the

particular solution Eq. (A.10). Then

i(x,y,z) - -z ddnf(E, )- + i] exp[ (M(x-) - R))
S2(A19)J A

Here A is the wing area. We determine lim (*(x,y,z). The limit

is obviously zero, as long as R 0, for instance for all points

outside of the wing. Assuming that the origin lies within the

wing area we evaluate (for simplicity) the expression for x = 0,

y = 0, z = e > 0), i.e., we approach the plane of the wing from

above. Accordingly we consider

(0,0,)= - f d~dnf(E,n) 2 + 82(n 2 + 2) 3/2

(A.20)
Mik+ ) 1'12

+ + 82 2 + 1/2 exp[ikM -C2 + 02n2[IC M + ( + 2

We cut out from the wing area a small ellipse, given by

= Y cos a, n = y 8 sin a

where y is constant and independent of E. For points outside of

this ellipse, the integrand is bounded; because of the factor

c in front the expression vanishes for e = 0. Retaining within

the ellipse only the dominant terms, one finds
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lum *(0,O,e) = -lm 82 f(0202 2
e- o c-~o ellipse (2 + (n2+ ))3/

In evaluating the integral we set

C = E~, ci"

The boundary of the region then becomes

- coS a, i- sin a.

and one obtains

lim )P(0,0,C) =-lirn a f( 00) r fi2 /
E-0 C-0 ellipse (2 + 2 (H + 1))

Now we set

= f cos a

8 sin a

The boundary of the region is then given by

= Y/C

Moreover

d~dfi di~d

Then A

y/E

lim 4(0,0,) -lim 278 f(0,0) 2 di

- lim 2rO8 f(0,0)(r2 + 8 - 27r f(0,0)
C-0 0

12-4

N,
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The acceleration potential Eq. (A.20), therefore, gives at point

( ,n) the value -27 f(,n) and for the nondimensional pressure

defined in Eq. (A.5) 4nf(&,n). The contribution to the lift is

the pressure difference between the lower and the upper side. It

is denoted by Ap. Thus one finds

The upwash due to this lift is then found from a corresponding

superposition of expressions Eq. (A.16)

w(xyz) ;[z f Ap(&,n)K(x-E, y-n, zk)d~d (A.21)

A

where

K =ep-kxM exp(ikV) +
R(x-&,r)(V(x-E,r) 2 + r2) /  [.:

(A. 22)
V exp(ikv) ~

+ f( v 2 +  )32 dvj

.-00 -.

2 2
r, R and V, and (v + r2 ) are given inEqs. (A.17) and (A.18).

This equation is due to Kuessner it holds throughout the flow

field. Identifying w(x,y,O) with the upwash found from the

boundary conditions at the wing surface, z = 0, one obtains an

integral equation for Ap(E,n). Frequently this is written as

w(x,y,0) = f Ap(&,n) K(&-x)(n-y,k)d~dn

A

i.e., one makes the limit z-0 immediately. Because of the

singularities of K, this expression must then be interpreted by

some special technique (e.g., the one due to Mangler), but then

one has to verify that the assumptions made by Mangler are

applicable. The present analysis is based on Eqs. (A.21) and
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4,-449 CA.22). The evaluation of the kernel K as a development with

respect to k is due to Ueda (Ref. 2). (See Appendix B.)49
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APPENDIX B

REDERIVATION OF SOME FORMULAE DUE TO UEDA

The derivation of the formulae on which the present report is
based seem to be available only in Japanese (Ref. 2). At least to

some readers, a rederivation may, therefore, be desirable. The

results shown here are somewhat more detailed than those of Ueda.

The following expression is to be evaluated:

B~k~r,) - [ exp(ikv) -:

B(k,-,) = J 2  2 dv (B.1) L

A slight simplification is obtained by setting

= V/rj (B.2)

V " ru

Then one obtains

B(k,r,V) = r 2 B(k,) (B.3)

with

exp(iku) du (B.4)
f- u2 + )3/2

In essence the formulae are obtained by a development of the

exponential function in the integrand. But, as the development

generates higher and higher powers of u, the integrals will not

converge as the lower limit tends to negative infinity. Therefore, F
we write

k, - B)(k) + B2 (k) (B.5)
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with

B exp(iku)B1(k) " (u2 + 1)3/2 d B6

V

B kexp)iku = du (B.7)
2, (u 2 + 1)3/2

A development of the exponential function in B2 leads to converging

integrals. Real and imaginary parts must be treated separately.

B2 R(-kv) = - n 2n U2 (V) (B.8)
n-O

0

2 1 (R,V) = n (1)n 02n+I Un+1(v) (B.9)
n=O

with

V Un
U nV) -1 (u2 3- 2 du (B.1O)

0 I

These integral can be expressed by elementary functions. Let

W n be the pertinent indefinite integrals including the factor

(n!)-I. Then

Wo(u) = u(u2 + 1)/2 (B.11)m0

W1 (u) . -(u 2 + 1)-1/2 (B.12)

W2 (u) - (1/2)[log((u 2 + 1)1/2 + u) - u(u 2 + 1)-1/2] (B.13)
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Further expressions can be obtained recursively. The relation

d M-1 U ~ m + ~ m-2

a-i (U 2 + 1)1/ (m2CU2 + 1)37+(-) (U + 1)37

- (m-2)m!(dWm /du) + (m-M)m--2)!(dW m2/du)

yields the recurrence relation

wm) (m-2)mI (u.2 +1)1/2 -m~ 7 1 Wm-2(u) (B.114)

Ueda's formulae are based on this relation.

A more direct formulation, which will be used in this report,

is based on formulae in Appendix C. there the following

definitions (for indefinite integrals) are introduced

1-12(w) w m (w 2 +1) -1/2 dw

(B.15)

Im32(w) w wm(W2 +1)-3/2 dw

* They are related by

1-3 /2 (w) -w ~m-1 (w 2 +1)-112 +(m1l)I-
1 1 2 (w) (B.16)m m-2

*First we evaluate B 2V Setting

m =2n +1

one obtains

1-3 /2 (w) -w2n (w2 1-1/2 2 1- 1/2 ()(B.17)
2n+1 = w ( ) +2 2n-1()
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Furthermore, from the equation top of page 1~49

- n-1
1-1/2 ()-I n1021-1 (2 + 1/2 2 2Z (B.18) I
I2 n-1w L\-082~JW )89

t-%
For the 0 I,' one has the recurrence relation Eq. (C.8). To

obtain U 2 1~ one must substitute the limits w -Vand w - 0 into

Eqs. (B.17) and (B.18), and multiply by ((2n+1)!) .One obtains

2-1/2U1 = (V 2+ 1) - -)(B.19)

U = -(2n+1)1 1  ~n~2n+1
(B.20)

+ 2n+ )1 0 29 V)- C2n1  n > 1

with

2n
2n+ (2n+1 )1I(2n-l1 82n-2(B2)

One has the following recursion relation

02n+1 2n 2n-3 (2n-1 )! 82n-4

2n-1 n- (n1) 2n-2

One has from Eq. (C.8) (setting k n-2)

82n-4 -2n-2

$2n-2 2n-3

Therefore

02 1 /C - 1/(4n 2-1) (B.22) IVA2n12n-1
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Because of the factor 2n in the numerator of Eq. (B.21) the

recursion starts with n - 1; then 
%

C3 u"Tr'

This suffices to evaluate Eq. (B.20). But on the basis of Eq.

(B.22), one can also start with n - 0 and c1  -1. Then Eq. (B.20)

encompasses also Eq. (B.19), if the sum
k-0-1

which then arises is understood to be zero.
k-O

The expression U2 n+1 consists of three terms: the sum in

Eq. (B.9) formed with the first of these terms gives

n 1 -2n+l12n.-2 1.-1/2 - 2 -1

n - )  (2n+1)'K2n+1 - - 1 2 + -1/2sin(V)

One thus obtains

B 2 -- V(2 + 1)1/2 sin (kV)

21-

+ (V2 + 1)1/2 n (_)n c 2n+ vnI o 2 (B.22a)

Sn (_)n 2n 1  2n+1

n-0

The c 2n 1 's and 8 2's are evaluated, respectively, from Eq. (B.22)

with c1  - and from Eq. (C.8) with 0 1.

To evaluate B2R one needs expressions U2j. They, too, are
based on the formulae of Appendix C. Eq. (C.13) for m - 2mI
assumes the form

1-3/2 1 2m 1-1w2 +I-1/2 (2 I " -1/2 m I2m - W (w 1) . (mI - ) 2 m1-2 m1 -13

131 - -

. . . .. . . . . . . . . . . . . .

|:.".'. .".".'J, -- ".-"-"'' ". , - - -. -":.-"-. -, -- -, '-. -- ' J .- .2v > ,''d ,:' ,,,. - " -*.,.: .,1 , .--. X



* - ,- ,re .. . . .. Y= '- -i- '' 2 > • : > . -' ? . . . .-- - - .

* Examining this equation and Eqs. (C.9), (C.10), and (C.11) one

!4 finds that there is no contribution of the lower limit in Eq. S.

(B.1O). One then finds

-1-2/12 -iW2 :2:2/2 (B:

UO(1) / _-(U 2 0 -+ 1 2) + 1)1/2 n i)I/2 (B.23)

S 2(V V-I(v 2 + 1)122 I. 2 _ 2 (B.25)

U~~2n(O_-,.

• with

2n-1 1 n-"2r! 2 n- 2 )B2 n 3  2B-12n

The c I's are expressed explicitly in Eq. (B.27). This formula is

obtained as follows:

c 1/16 (B.26a)

From Eq. (C.5) which, by definition, is also satisfied by the $'s

one finds

02n-3 2n-1
82n-1

Then, one obtains from Eq. (B.26) the recurrence relation .

c2n+2/cn- - [2n(2n+2)] -
2n22n

with the initial condition (B.26a) this is solved by

c2 n - 2(-1/4)n [n!(n-1)!] - 1  (B.27)
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For n-1, this gives

C2

The last results show that Eq. (B.25) covers also Eq. (B.24) if the
1-0

sum is understood to be zero.

Thus one obtains

B2  V -1(12 + iY 1 1 2 cos(RV) + r'(V 2  1)1/2

2 2(V2 1)1n/2 n~- (i/2 )
2 n n V2 1

i- nln-.T2-

-o((2 +1)1/2 + 1 - 2n+2 (.8
log(VV) (nk12I(B.28)2

* with

021+1 /S 2Z -1 a - /(I + (1/2)) 0 1

*The independent variable in B1 is k. To suggest this we write

temporarily

i~y
(B.29)

B1 Q

Then

0x
- 0 ) du (B-30)

-m(u
2 + 1)3/

*Q(y) satisfies a differential equation closely related to the

*Bessel equation. One has
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00 i 0
IdQ - idu (B.31)

2 02 + u2) 3 / 2

d2Q 0 u2 exp(iyu)
dy2  (1 2 3/2 du (B.32)

- + U

d2Q/dy 2 is not absolutely convergent; but the integral is well

defined If one reformulates Eq. (B.30) as

0 exp(iyu) ',
Q(y) - lim f 372 du

a*- a (1 + u2)
ap

One obtains from Eqs. (B.30) and (B.32)

I2 -
177exp(u du (B.33)

and from Eq. (B.31) by an integration by parts

0 0
dQ exp(iyu) exp(iyu)
d- - Y du (B.34)

(u + 2 "(:u_

Combining Eqs. (B.33) and (B.34) one obtains the following

differential equation for Q

2d2Q 1 d Q (B.35)

dy2  y dy y

We separate Q into ints real and imaginary parts Q - + I QI.
Then

d 2dQR 1dQR
-dy - y dy QR 0 (B.36).

L.y

d2Q I  1 dQI 1 (B.37)
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J.
Obviously Q(-) 0 0, furthermore

0 0-Q(O) - du u - B.8

duU (B.38)
-mO R + ) 1

(u2  )32 i2  T77/
(u +-0U

These are the boundary conditions for Eq. (B.35). The solution QI

will arise in the form of power series in y, which makes it

difficult to recognize whether the boundary condition Q(-) - 0 is

satisfied. It will be shown below, that the definition

QI(Y "0 sin(yu)

Q (y) i)3/U du (B.39)

implies

2d Q1
w i/2 (B.J40)

d y-

The derivation is shown below. This condition will be used instead

of Q - 0. This procedure cannot be applied to Q.; (there one

would find d2QRjdy = - . From here on, the real and imaginary

parts are treated separately. The following derivation of Eq.

(B.40) ends with Eq. (B.47). One has

2 u sin(yu) du - -QI(Y) Q (Y) (B.41)

dy . (y + )

with
= 0 sin( yuB

QI f (u2 +i)i2 du (B.42)"

sln(yu) "-QI du (B.43)
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It is not permissible to form the limit y - 0 under the integral
sign, for within the region of integration there are always values

of u for which sin(yu) is not small. We write

-a/y 0 u +1f + sin!A.u) du a > 0

-a/y

Now

-a/y 7 d i< -/

(u 2+ 1)32 du < (u 2 +1)3/2 du =(
2 + 1)172

-a
- 2 2 1/2+(a + y)

This expression vanishes for y+0. Furthermore,

00
sinflju) 2 1 -1/2

-a /y Iu+ ) 3  2  -a/y (u + 1) u--a/y

y y[1 - ((a/y) 2+ 1)-1/

Therefore

lrn Q 1 2 (y) =0 (B.'44)

Q is transformed as follows

2u -1/2 -
Q-' f +U 11~2 du f- ((u + 1) + U )sin(yu)du

0
-Ju' sin(yu)du (B.45)
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The second integral can be evaluated by the calculus of residue,

0 u- sin(yu)du =(1/2)J v-1Csinv)dv w1,r2 (B.146)

The integrand in the first integral on the right of Eq. (B.145) is

rewritten

u2  (1) -122=( + 1)12 *U 1
(u 1-1 -2 1/2 2 1/2 2 1/2(u + 1) u (u + 1) u[(u 1) -uJ

In the integrand of the following expression, one has

u < -a/y < 0

Therefore

-a/ 2 sin(yu)du Iay du
(u + 1)1 12 uPu 2 + 1)112 -u] f u 2  1

The limit y - 0 of this expression is zero. Furthermore,

(usin(yu)du 0 du (B.47)
2u + 1)1/ U 2 + 1)1/ u] u2

-a/y u -a/ y

Also this integral vanishes in the limit y-e0. Substituting

Eqs. (B.4P4), (B.145), and (B.146) into Eq. (B.L41) one obtains,

indeed, Eq. (B.4I0).

One notices that the homogeneous part of Eq. (B.37) is the

same as in Eq. (B-36). The indicial equation for the singular
point y - 0 in Eq. (B.37) gives the exponents 0 and 2. Therefore,

there exists a homogeneous solution in the form of a power series

which starts with y We set for this particular solution .. \
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Q3 (y) =Xaj+ 22 (B.148)

This gives the recurrence relation

(2j+2)2j aj 2  a 0

which is satisfied by

.aj+ 4 ( 1 / 2 ) 2+2[J(J+1 ) 1 ]-1 (B.'49)

if. one chooses a2 - 1. One solution of the inhomogeneous equation
(B.37) can be obtained as a power series in y.

22j1 1

Hence, by substitution into Eq. (B.37)

X (-)JCU2j+I)(2j-l)bj+ b 2j 2i-l y -

The equation gives for j -1

-bly -y

Hence

b -1(B-51)

In addition one has the recurrence relation

-1 2 -1b 2j1/b 2 - - (1/4)[(,J+1/2)(,1-1/2)] [ *(2j) -1] (B.52)

* Then because of Eq. (B.40)

QI(y) Q4 Q(y) wi/14 Q 3(y) (B.53)
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Returning to the original notation one has

(B-54)

Now

B CV~k) B11 (k) + B21(V,k)

B2  is found in Eq. (B.22a). The last term in Eq. (B.22a) cancels
the first term in Eq. (B.5'4), for the b 2j1and the c 2j1satisfy

the same recurrence relations (Eqs. (B.52) and (B.22)), the same

starting values b = 1  -1, and the sums have opposite signs.

One thus obtains

--1 -2 +j-1/2BV ) sin(iV)

nn-1

(B.55)

J0

where the coefficients c 2n+1 and the B 2k are obtained respectively

from Eq. (B.22), with c 1 . -1 (or c 3 - 1/3), and Eq. (C.7) with

B0  1

To evaluate Q y we use a result about Bessel functions.

Setting

R Y y Z(y) (B.56)

one obtains from Eq. (B.36)

2
d Z 1 dZ ( 11

dy y
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which is solved by

pZ Z Z1(iy)
where Zis some linear combination of Bessel functions of order 1.
the conditino Z+O, as y-*O is satisfied by the Hankel function of
order 1, H ()(iz). One has (see for instance Ref. 3

H (z) =J (z) +i Y (Z)
V V V

where

z -x +iy

J (z) -(z/2) (-(z/2 )2
1 nI(n+i)I

Y(Z) -r1{-(z/2)
1  2(log(z/2))J (Z)

-(z/2) (*#(n+i) + (n+2))n!(n2)!
n-O

Here

- y+ n n > 2 (B.57)
rnn
M-

Y -. 5772156649 ...

Then

n
-- 2Y +2 rnim 1  (n+1) -
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Observing that p.

log(iy/2) = log(y/2) iw/2

one obtains

H (iy) - J1 (iy) i Y (iy)

2n+1,

-(y/2)-' + (*(n+l) + *(n+2) - 2log(y/2)) ' -'%
n-O "

According to Eq. (B.56)

QR " const y H1 (iy)

and this expression satisfies the condition for y+-. Satisfying

the condition QR'y=O = 1 and returning to the original notation one

then obtains
2n+2%

BIB(k) 1 1 - ((n+2) - 2log(k/2)) (k/2 )2n+2

1H nI(n+1)I
n-O

With Eq. (B.28) one then obtains

BR - B1R (k ) + B2R (k,V) .2-

BR ""-1( 2 + 1)-1/2 cos(iV) + V-1(V2 + 1)1/2 1 (B.58)

+ 2(-2 + )1/2 (i/2 )
2 n 2  n -21-1

n-1 -n+l)! 1 2.-1'

,' /22n+2 ""

(V2 + 1)1/2 v) n(12)!
+ 2log(( -(j~,2)2n+2n-O

" ,, tK ) " r/22n+2-'"-

- I (*(n+1) * $(n+2) - 21og(/2),(n+.)."
n-O n"
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T

(Here the summation subscript in the second row of Eq. (B.28) has

been changed by setting j = (n+1). The next step would be to

return to the original variables k and r, and to form B = BR + i Bi.

The first terms in these expressions then combine to form as

contributions to BR + i B.

-0-1(V 2 + 1)-1/2 exp(ikV)

or because of Eq. (B.2)

_-1(V2 r 2)-112 exp(ikV) (B•59)

. Within the kernel K, B appears in combination with

NR(V 2  -i 2 )- 1 / 2  picIP. R-I1v r 2-/ exp(ikV)

- This and the expression Eq. (B.59) can be combined. We recall the

following relations (Eq. (2))

- -2 1/2 L

= _i)2 + 2 -2]1/2 (B.60)

-1-2 ((-x) + MR)

"" Then

S2 21/2 -2-
V r) +8 RM(Z-ix)

log(V + r2) - V) = log[B-2(R + M(&-x) + (t-x) + MR)]

(B.60a)

- log[(1-M) -1(R + -x)] = log[(I+M)r 2(R - (-x))-].

Using these relations one obtains

exp(ikV)(V 2 + r2 )-1/2 [-- 2.+ 1 . - 1 exp(ikV)
IV Ri RV

1~42

II
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The vanishing of the factor (V2 + r2)-1/2 is a significant

simplification for subsequent integrations with respect to & and n.

The factor V-1 occurs only in the first term of a development with

respect to k. To display this we write

exp(ikV)(V2 + - + M] .L [exp(ikV) - 1] -

x V r ) []

The term in the bracket is, of course, of 0(k). Combining the term

S(A)-1 with the other terms of order k (in Eq. (B.58)), one

obtains after introduction of the variables k and r, using

Eqs. (B.60) and (B.61)

( 2+ 2)1/2

RV rrV
I I 2 + A(V2 + -2)1/2]

Kj 2  -2Rr
2-2- [~ i2-2 + R2 + MR(FZ-x)]

1 1 02-2 -2 2-2
-2 [- r+ r + x

r 0 rV

Hence

(2 + -2)1/2 (2--

RV r R(R +

The last formulation shows that for - x > 0, and r - 0 (i.e., if

the point (x,y) lies upstream of the point ( ,r), there is no

singularity in the flow field, and for (E-x) < 0 (i.e., if the

point (x,y) lies in the wake of the point (E,n)), one has a
-2

singularity - - Assembling all this information one obtains,
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-- V2 +-2)-1/2 BRkV
Mr, 1(2+r2-/ exp(ikV) + BR(k,V) +i BI(kV) .. '

= - [V 1 - (exp(i k V ) - 1) + 1 R

r

-2(2 + -2)1/2 (k/2)2n+2 -21.-I r2(n-1)n1 n!(n+l)! '2V-r

r - 2n
+ 2(k/2) 2 [log((k/2)((V 2 + -2)112 V))] (kr/2)

(kr/2 )2n f

- (k/2) 2  [4(n+1) + 4-(n+2) - iT]n +)
n-0

- ~n-1I"''
2+ -21/2 k2n+1 l 21 r2(n-1-1)
i(V 2 r 2)11 (_)n C2 n+ 1 kZ 2

n-1 "-O

Here the expressions containing V can be expressed in terms of E-x

and R, by Eqs. (B.60) A in turn is expressed by -x and r. The

expression therefore appears in terms of the basic independent

variables.

In the last minor step, we introduce the Prandtl-Glauert

coordinate distortion. The purpose is to simplify the expression

R, which introduces in certain integrations branch points of the

integrand. We set accordingly:

" Y, )- -l - - (B.61)

* = 1 rr=2 2 1/2S r, r [(n-y) + z I

R(Z-x,r) R(&-x,r) ((&-x) + r2 11

-2V(Z-ir) - V(&-x,r) - -8-(MR &-x)

-2 +-21/2 -- 2 -( 2 + )I/ . -2[ +M(Zi)] . -[R+M(&_x)]

144

-- .I . .. , "]



log(V2 r2 112l-og[(l-MY1'(RZ--X)) =log[(1-M) '(R+&-X)]

- log[(l-M) 1 r 2 CR - (&-x))-1] (B.61)

Ccont'd)

The basic expression for the upwash now appears in the form

w(x,yz) -(8w) (z Ap( ,ri)K(k,&-x,r)d~dfl) (B.62)

-1 f

K - B exp(ik(E-x)(K 1 + K 2 ) (B.63)

= 2R - x) 2 2 - 1 k/ )2n
K Rk /2)[log(k/2)r (R (&-x))1 ]Xn(+)r 2 R0 T (~

(B.641)

K 28 6r 2 
- 82 R(H (&-x))] 1  (k2/2)[log((kr)2/2)

- 2n
- lo~k(R- (~-x)) x(kr/20)

0 nl(n+l)!
C B.6a)

-11 2 (kr 2n
-82 R(R +(&-x)) +(k /2)log[(k/2)CR +C-)] k/8

10 n! (n+l H

(B.6'Ib)

K 2  ( RV) exp(ikV) -1) (B.65)

.2 (RM x) k/2 )
2 n+2  n 21-1 -r1 )2Cn- )

n-1 In~)

n-:1
n 2ni 2 - -1 2(n-1-1)

n-i 2nt O 021 CB )

2 * /(8)2n
-(k'/2) [iEp'n~l) + 4i(n+2) + log~l-M) -iwl n[kr/C2)]

where
2

2nc /C- -1/CI4n 4-1), C1  1
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During the derivations also constants c2 n have been encountered,

but in this formula they are directly expressed by factorials (see

Eq. (B.27)). Moreover

62n+2/02n - - (2n+l)/(2n+2), 00 - 1

B 2n 1/2n1 - - 2n/(2n+1), B1 - 1

'" n

-(n+l) *(n+2) - - 2Y n r-1 + (n+1) 1

r-1

Y - .5772156649

r, R, and V are defined in Eq. (B.61). Eq. (B.64a) displays the

singularities which occur for (E-x) < 0 and r-O. Eq. (64b) shows

that there are no singularities for (E-x) > 0. For points (x,y)

close to points (C,n), for instance for points (x,y) within or

close to a (&,n) element only very few terms of the infinite series

are needed. Including powers up to k one has

221 2 2 -
K1 - r- R-R - (E-x)) + (k 2/2)log k[r 2(R- (E-x)) - 1 ] (B.66)

- B2 (1 CR * (E-x)) -1 + (k2 /2) log k(R + (-x))

K2 . - ikR 1 + (k 2/2)R- V (B.67)

- (k/2) 2 [*(1) * *(2) + 2 log 2 log(l-M) - r)
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APPENDIX C

SOME INDEFINITE INTEGRALS.J

.1r

Let

m fwm(w2 + 1) dw (C.1)

Setting

12 2 12m-1 mk cM (W )1/2"

I 1m (w + 1) 1 ak w + c + 1  2 dw (C.2)

one has

-1/2, ---I2 1)-1/2 ak+ -i .k--m
dIm- m(w + ak(k+l)w amk w + c

k=0 1 'A1(C.3)

We replace k in the first sum by J-1 and in the second sum by

J+i. Then

-/2 12m mmw2 m )wdi"Idw = (w 2 + ) a'-i j  + 0 (J+l + c m IH

+ m- a~ 1J+l w c

(0.14)

For 1 < J < m one obtains by comparison of the coefficients of

the power w' in Eq. (C.3) and in the derivative of Eq. (C.1)

m + (J+l)am+ = 0 (C.5)

0
Moreover, from the power w

am + c = 0 (C.6)
1

mand from the power w

m am  = 1 (C.7)-i

11i7
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*. Eq. (C.4) amounts to two recurrence relations, one for even and

one for odd values of m. Eq. (C.7) shows, that the subscripts
of the am's will be odd for even m, and even for odd m. Consider
odd values of m first and set

m = 2m I + 1

then from Eq. (C.7)

2m 1+1-l(.a
a2ml = (2ml + 1) (C7a)

Let a sequence 82k with 80 = 1 satisfy the recurrence relation

Eq. (C.5) namely

82k+2/02k = - (2k+l)/(2k+2) (C.8)

The 8 's can be expressed in terms of factorial for half-integral2k
argument, but this has no practical significance, as one will even
then evaluate the 82k s recursively. The first few of the 02k s

are found in the following table

0 1

2 -1/2

4 3/8

6 -5/16

8 35/128

Because of Eq. (C.7a) one has
2ml+1

a2k = [(2ml+l)82  
1 82 k
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Therefore, from Eq. (C2

=-1 E(2m +1)0 1-1l(w2 + 11/2 w 1 2k

We write down some of these expressions

i1 j 1 2  (w 2 + 1) 1/2

3= (w2 + ) 2 (l/3)w2  (2/3)]

1 52= (w2 + 1)l/2(1/5)w - (4/15)w2 + (8/15)1

I 7= (w2 + 1) l/2(17)w6  (6/35)w + (8/35)w2  (16/35)]

For m even, we set m =2m 1*Then

1 =1

2m1

Setting J= 2k in Eq. (0.5) one obtains the recurrence relation

82k+l 2k1 (2k)/(2k+l) ,k > 1 '

we choose 8 = 1. Then one obtains the following values

3 -2/3

5 8/15

7 -48/105 =1/3

Then

2mk-
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Finally, from Eq. (0.6)

2m 2m1
c 1 a 1 a 1  [ 2m1 02 m 1-1

* Thus,

21-11 Lm[2m .. 1](w 2+ 1)1/2 m ~ 2k-i
11 2-

[2m 1 2  ]11/2(0.9)

f[2m

1~~~~~~ ~ ~ ~ 0 / w2+1 12d o[w2 112 w] (0.10)

*Some such expressions are

1 / (w 2 + 1)11 2 [(1/2)w] -(1/2) J1/12

-12=(w2 + 1)1/ [(1/4I)w3  (3/8)w] + (3/8) -12(0.11)4 10

6 =1 (w 2 + 1) 1 / 2 [(1/6)w5 
-(5/214)w

3 + (5/16)w] (5/16) 10 12

* Expressions

1- w (w + i 1  dw (0.12)

could be treated independently by a similar procedure. In the

present context, one is led to more useful formulae for the upwash

if one carries out an integration by parts to express 132in
112 m

terms of I" 2  One hasm

= -~r~i(w
2 + 1) -12+(rn-) I~/ m > 1 (0.13)

m mn-2-

For m =0, one obtains directly

=W(w
2 + 1)12(c.14)
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Also needed is the following integral .'

I = (wcosx - sina) 1 (w2 +1)- 1/2 dw

Setting

w =tgO (C.15)

one obtains

I sign(cosO)J[(tgacosa sinoi)cosO]- d6 sign(cosO)Jsin(B-a)l dO

Then

(wcosca sini)- 1Cw 2+ 1) -1 2 dw
(0.16)

=sign(cos6)log~sin(6-a)(l + cos(O-a))-

* Furthermore

J(wcosct sina- 2 (w 2 +) 1) 2d

=sign(cose)fsin(O-a)y2[cosO-a)cost sin(6-ca)sinct~d6

Hence

[(wcosa -sinctY (w2 + 1) w(17

-1 -
=-sign (coso){r~coso sin(6-ct)] + sinct log[sin(6-ct)(l cos(O-a)) ]
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APPENDIX D

A LIMITING PROCESS

The following expression will be discussed:

lii L n2 f 3  ( )d j lml 3z2  n2 f 3(_)dr

z-O Jf (n-y) z2 + Z z+O ( (n-y)2 + z2. nl

2z4 72 f3 (n)din i.$!-11
[( n-y) 2  z2] :.'

In both integrals we replace f3 (n) by the maximum of If 3 ()I --

If3 Imax. One has

• . ~~2 d in -1qy[i
2 =  arctg.'f ( n y 2  2 z..-

As the arctg remains bounded even when its argument tends to

*2 infinity, (as it does for z0) the first term is 0(z) because offacor3z2  V

the factor in front. Moreover

dn = z3L z(n-) + arctg
(qy)2 z2  

(n-y)2 + z2

Also the second term is O(z).
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APPENDIX E

THE EVALUATION OF INTEGRALS f q n 01dq, Jq 02 dcq1 AND fq n04 dq

First we derive some auxiliary relations. Considering U and

V as functions of' p and q (Eqs. (1614)) one has

3U/3q - sin 6

av/3q - cos 6

Furthermore, since R -U + V2)1 /2

log (R-V)I -R
t U =const

.~log(R-V)l (R-V) UR 1  . (R+V)U R
V -const - 1

a U + VU R

Therefore,

T-log(R-V) =-R Cos 6 + R VU sin 6 + U sin 6

q-1

-H 1 U- (-Ucos 6 + V sin 6) + U- 1sin 6

Then with Eqs. (1614)

Llog(R-V) =-pR U U sin 6

(E.1)

Llog((R-V)IUI -pR

Similarly

rlog((R-X)IYI- 1 - Y- E2

(Notice the difference in sign.)
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Consider now
UF

fqn 1dq fqnlog(k(R-X))dq qn log((R-X)/Y)+ log(kY)]dq

With Eqs. (E.2) and Eqs. (162), viz.

Y - q cos -p sin Y

one obtains

qnld q =(n+1)- q log(k(R-X)) - qRn+R-y-ldq cos Yqn -ldq

Carrying out the division one finds

qn+lY-1 cos-1 Y[q n+((ptgy) 2q n-1...(ptgy)n]+(ptgy)n+l Y-

n+1There are two integrals with the factor (ptgY)n  , namely

-(ptgy) n+ipJR-Y-ldq + cos Y fY-dq)

Hence with Eq. (E.2)

- -(ptgY) n + [log((R-X) Y I- ) + log(kY)

n+1
- -(ptgY) log(k(R-X))

Therefore,

qn -n+1 n~

fq~dq = (n+l)-l{(q - (ptgY) )log(k(R-X)) (E.3)
it in n--

p cos-I Y[ R- (q + (ptgY)q 1...(ptgY)n ]dq

1 r,+~ n+1 + (pg~ 1 n +2 -i n-i..(Pg)
I(n+)-q + (ptgq)n-q + (ptgY) (n-)- q q...(ptg)nq]

n n -o(_)U1The treatment of Jqn0 2dq - fq log(R-v)u1-) is nearly the same.
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Beside Eqs. (E.1) one has Eq. (164), viz.

U - q sin 6 + p cos6

Jq n dq - (nfli) l11,n+1 og(R-V)IUI -1) + pfR- lq n+1 (qsin6+pcos6)-1 dql A

q n1(qsin6+pcos6)- 1 sin- 1 6[qn+(-pcot6)q n + (-pcotd) 2qn-

+ (_0Ot6 P)n + (_PCOt6)n+lU-1

Hence,

Jq ndq -(n+i) lj(q n+1 (-pcoty) n+1 log( (R-V)IUI'l)

(E.4)

+ sin 1 6fR l[qn+ ct)qn 1 (-.pot6) qn 2 (po6ndqI A

Finally we consider

Jqdq q JqRYl dq - jpqn q q 2)y R dq ,

Now

p2 qny Y-1 .p 2 cos- l1  n-i + (ptgY)q n-2 + (Pgn]-1 + 2(tny-1

q2Y- 1 cos- Y[ q n1+ (ptgY)q n+ ...(ptgY) n+] +(ptgY)+
2y-1

One notices that terms with the same power of' p can be combined.

For instance

2 n , pg)n+2 n+2 tyncos -2(E5
p (ptgY) -Pgy p (t(E.5)
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but in general the result appears rather more complicated.

Jq ,dq =cos YJRL q + (ptgYq n1n + (ptgy) 2 n-1 .. (tyn+1

n-1ql~ ** 2 (ptgy)n-1d + pn (tgy)fcos 2ylog((Rx/yl

In the last term Eq. (E.2) has been applied.
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APPENDIX F

LIMIT c+t/2

Only some of the expressions for the upwash written down for
a A 1/2 allow one to form the limit a+r/2 directly. The others

give either infinity or the difference between two quantities that

tend to infinity. The results for a - w/2 have been obtained by

direct computation. This suffices for practical work. The

limiting process a+-/2 has some value as an exercise, besides it . -

provides a cross check of the formulae.

The type of difficulty can be seen in the following examples.

Consider

dx
2x'-xin the limit c:O. One has
2x +

f dx -1 log(£x+c) for c 4 0

tx+c x/c for c - 0

Now
-I -1 -I1 ,-

C log(cx+c) - £ logc+e log(1 + (cx/c))

The first term can be regarded as a constant of integration, which

tends infinity as c tends to zero. Developing the logarithm with

respect to c one obtains indeed x/c.

The example shows that the idea of a development cannot

always be avoided, even if one would include the specific constant

of integration in the formula for the indefinite integral. _

We derive a number of recurring limiting expressions. The

order of the error in terms of Aa - a - w/2 is shown

(1 sina)cos - 2 a , (1/2) + O(Aa)2  (F.1)

cos a-tga- O(As) (F.2)
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Using Eqs. (133) one obtains

U -= O(a

(F.3)

V - X+O (Aa)

More specifically,

V-X -Ycosa-X(-sini) =Ycosa-(1/2)Xcos a+OA) 3 (.)

2 31U+Y -Xcosc*+Y(1-sini) =Xcosct+(1/2)Ycos a+Q(Aa)3  (F.5)

U' = -Y-1 +(U+V)UlY 1l -Y1 -XcosaY 2 +OA)2 (F.7)

VU-1 - CXsinci+Ycosc)(Xcosa-Ysinct) 
1

- -xY1 +(Xf 1 +(Xsinci+Ycosm) (Xcosa-Ysina) 1

-1 2 2
- -XY +(X cosa-XYsina+XYsina+Y Cosat) (F.8)

vu 1  . -XY -cosaR Y +0(Aft) 2  (F.9)

*UY -1+(U+Y)Y 1  1 -+CostXY 1 +(1/2)cos2 a+ 3) -

log((R-V)(R-X) 1l) =log(1-(V-X)(R-X)
1')

2 -1)~2 2 -2
=(-Ycosci+(l/2)Xcos a)(R-X) 1  (1/2) co c(R-X) +Q(Acj3

log((R-V)(R-X) ) - -cosci(RY -1+XY - (1/2)cos 2 [R 2Y- +RXY- ]+O(AU)

(F.10)
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We revert to the original notation and write down those

expressions which contain factors tga or cosa

0 2 -100 (a) - [arctg(v/u) + tg log(k(R-X)) - cos alog((R-V)/U)]
01 2 2[snco-2 -2 2

1i 0 8[-sina cos a U log(kY) * cos a U 2/y]

01 2 -1
I0 - cos a U log (kY)

10 2  a 2jU tg2a log((R-V)/U) - sina cosa-21og((R-X)/Y) + cos-1a(R/Y)}

02 2 -101 = 82fU tga log((R-V)/U) - cos a log(R-X)/Yl

Because of the definitions of X, Y, u, and v one has

arctg(v/u) - -arctg(X/Y) + const. This term, expressed in U and V,

differs from the corresponding expression in terms of X and Y by a
0

constant only. The other two terms of 10 are taken together.

Here U - const. Therefore, changing the constant of integration by

cos a log kU, one considers

tga log(k(R-X)) - cos a log(k(R-V))

-1 -1 -1
= (tga - cos m)log(k(R-X)) - cos a log((R-V)/(R-X) )

The first term is O(Aa) because of Eq. (F.1). The second term
-1 -1

gives RY + XY + O(Aa) because of Eq. (F.10).

Consider next

01 02 2 2 1 -1 -1 2
11 0 (a) I 10 (a) - 82U[cos- a UY-  + cos a RY + tg a log((R-V)IUI

sln co-2
-sina cos a log(k(R-X))j

.co -2 -1 -2 -1

Cos a UY - - cos a cos a XY- (1/2) O(Aa)
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2- -2
tg a Iog((R-V)IU I) sina cos a log(k(R-X))

2 -1 2
= tg a log((R-V)(R-X)- ) - tg a log(klUI)

+ (tg2  - sina cos 2a)log(k(R-X))

- -1 -1 2 2-2 -2
cos L (RY +XY - ) (1/2)(R Y RXY )p2

- (l/2)log(k(R-X)) - tg 2 aog(klUl )  O(a)

Therefore, if one disregards constants of integrations

0 01 02 2
I (1/2 ) - I10(w/2 ) + 110 (w/2) - Y[cos-laxy + Cos a(RY- * XY - )

- (1/2)(R 2 Y- 2  RXY 2 ) - (/2)log(k(R-X))]

0 2 -1 2 1
I1(r/2 ) - (82/2)[Y log(k(R-X)) XRY -  + R Y-]

but R 2Y -1 Y + X2 Y- and for a wr/2 - Y - const.

Therefore, by another change of the constant of integration,

one obtains

10 ML.g ~-,+ X2l JJ1I00 (B 2/2)[Y log(k(R-X) (XR X )Y -1)

0 -12
I 0 1 (a) = B2 Ultga 1og((R-V)IUI - ) - cos- a log(k(R-X))}

a Ul(tga cos- a)log((R-V)lU - 1) +Cos a log((R-V)(R-X) )

-Cos( a -og(k(U-)

6 2 UJO(Aa) RY- I  XY- - cos 1 a 1og(k UPI

Hence

0 2
10 1 (w/2) - 82(R*X)
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The limiting process a~ir/2 is immediately obvious in I.,
21 2 -I . and 1 22** (In other words, no expression cos a or tga are

encountered in these formulae.). Limiting processes are, however,

needed in Q0 One has
0*~

Q 0(a) - (V/U)(log(k(R-X))-1) -tga log(k(R-X))

+ Cos Q log((R-V)IUI

Here

-tga log(k(R-X)) +Cos a log((R-V)IUI) )

- COS1 a log((R-V)(R-X) )-Cos a(log(k~U) 0 (,&a)

- -RY +Y -Cos a log(kjUp) O(aa)

Therefore, disregarding constants

Q (w/2 -XY- log(k(R-X)) -RY
1

2 -2 2 2 -Q (1/2)IV U log(k(R-X))-tg alog(k(R-X).sinacos alog(R-V)jUI

2 -2_ -1-1 1
-(1/2)V U -tgaVU -Cos a RU

2 -2 2 -
=(1/2)X Y(log(k(R-X))- (1/2))+ tg a log((R-V)(R-X) )

-2 2 -2
+(sina cos a -tg a)log(k(R-V)) -sina Cos a log(kJI)

-1 2 - 2 -1 -1 -2
-tgct(-XY -Cosa R Y )+ Cos a R(Y +Cosa XY )+ Q(,&a)I

=(1/2){X2 Y- log(k(R-X)) -(1/2)) +tg 2a(-cosa(RY- + XY- 1

2 2 -2 -2 1 -
-(1/2)cos a(R Y + RXY )]+ (1/2)log(k(R-X)) + cos a XY

22 -1 1 -2 -2
R +Cos a RY + RXY -sina cos a Iog(kJUI) 0+ O(xa)I
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=(1/2)IX Y- log(c(R-X)) -(1/2) + (1/2)log(k(R-X))

2 -2+(1/2)R Y 2 + (1/2)RXY 21 - sinca cos 20 log(kjUj) 0 (&a)I

2 -2 22*but (1/2)R Y =(1/2) *(1/2)X Y-

* Therefore,

=(1/2)ilog(k(R-X))(X Y +(1/2)) +(1/2)RXY +~~

23
With these expressions the limiting process in I .. can be carried
out.
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A7V.

AN\N

Figure 1. Half-wing with Figure 2. Half-wing with h

trapezoidal elements. triangular elements.
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- - -- - -. -. - -

3 2

D 
( 3 a )

xIC

Y,7

(3b)

Figure 3. Triangular elements with lines of the wake
along which singularities occur. (Along
line AB of Figure 3a there is a singularity
as (y-0)1, along all other lines as
log ly-nl.)
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1676

.•

Figure 14. Subdivision of the wing
surface in which no
element side is a line
1) = const.
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(5a)

Figure 5. Wing with leading and trailing edges parallel to each
other, and elements given by congruent triangles.
Figure 5a shows the two types of elements encountered.
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lb

Figure 6. Wing with no parallel leading and trailing
edges, and the same kind of elements as in
Figure 5. Exceptional elements appear at....
the trailing edge. .-'
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.1

- ELEMENT - - -

xy- ELEMENT

Figure 9. Subdivision of n- and xy-elements.

7..

13

3

(a) (b)

Figure 10. Numbering of the corners in an En-element
with one side parallel to the n-axis.
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aI.

27r/

A

Figre 12. Map of an element from the E,n plane to a p,a plane,
if the point &-x =0, n-y =0 lies outside the element.
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Fgr 1 3 .Ma of a rinulr lmet rm"h

pln t a aplnI th p tE-x "

n-r 0 e so Insdetheemnt

14 7.

3 2

Figure 13. Map of a triangular element from the ,n 2'i
plane to a p,ct plane, if the point -x = 0, .
r -y =0 lies inside the element. ',
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-~ ~ x , c y element I

yDEIXj
1 1 1 Yj+ 1

C,'7- element

Figure 14I. Choice of the sign for the contribution
of the triangle Evi'.i xj+lYJ+i31 xj~yj
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